

Jumpstarting Bridge Projects with AISC's Standard Plans and Conceptual Design Tools

Tony Peterson, PE

Senior Bridge Steel Specialist

Jeff Carlson, PE

Senior Director of Bridge Initiatives

American Institute of Steel Construction

Formed in 1921 by steel fabricators

Purpose:

- Uniformity in the fabricating industry
 - Shape data
 - Standard design specification
 - Standard of practice
- Promote structural steel industry

History of AISC

1st AISC Specification (1923)

10 pages and \$0.50

Objective:

To promote uniform practice

By 1924, the first AISC
 Specification had been adopted
 by 25 cities.

Today:
AISC Specification is ~800 pages
and is FREE!

AMERICAN INSTITUTE OF STEEL CONSTRUCTION

STEEL CONSTRUCTION

STEEL AND IRON

EXPLANATION OF FORMULAE

STANDARD SPECIFICATION

FOR THE

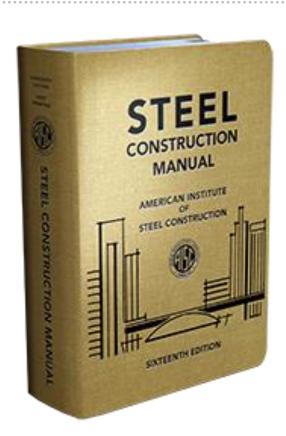
DESIGN, FABRICATION AND ERECTION

OF

STRUCTURAL STEEL FOR BUILDINGS
JUNE 1st, 1923

CODE OF STANDARD PRACTICE OCTOBER 1st, 1924

C. F. ABBOTT
EXECUTIVE DIRECTOR
EXECUTIVE OFFICES:
350 MADISON AVENUE
NEW YORK, N.Y.


PRICE 50 CENTS

LEE H. MILLER CHIEF ENGINEER ENGINEERING OFFICES: 1052 LEADER BUILDING CLEVELAND, OHIO

Current Specification

16th Edition (2023)

No longer \$0.50

Who is AISC and what do we do?

- Certification
- Membership
- Building initiatives
- Bridge initiatives
- Education
- Research
- Steel Manual
- Meetings/Steel Conference
- Communication
- Government relations/sustainability
- Workforce development

Who We Are

National Steel Bridge Alliance, a Division of AISC

- Technical Institute & Trade Association
- Not-for-profit: working for the advancement of steel bridge design and construction
- Services: free resources, forums, AASHTO/NSBA collaboration, preliminary design & evaluation tools, continuing education

NSBA At A Glance

- Link between bridge owners and steel bridge fabricators
- Design resources
- Fabrication resources
- Steel solutions center & project assistance
- Research for new initiatives
- Education for bridge designers and owners
- Communication and messaging
- AASHTO/NSBA Collaboration

What NSBA Can Do For You...

- Steel bridge project assistance
 - Conceptual design
 - Project plan review
 - Connection to steel bridge fabricator
 - Conceptual pricing assistance
 - Design specification review

Why Do We promote Steel?

- There is a time and a place for most bridge types
 - Our 6 primary differentiators:
 - Resilience and longevity
 - Easier inspectability and repairability
 - Accelerated construction schedules
 - Graceful solutions for simple and complex geometries
 - Unmatched span-to-depth ratio
 - A far more sustainable option, with reduced waste and pollution

How to find a steel bridge fabricator

aisc.org/certifiedbridgemembers

The Steel Solutions Center is your gateway to nearly 100 years of steel knowledge, and it's just a phone call or email away.

aisc.org/askaisc solutions@aisc.org 866.ASK.AISC

answer your technical questions about structural steel design.

help you understand NSBA's technical publications.

help you reduce project risk by connecting decision-makers with AISC bridge-member fabricators for price and schedule information.

provide conceptual solutions for steel girder and beam bridges, including framing plan and girder spacing concepts, preliminary girder sizes, and steel tonnage estimates.

AASHTO/NSBA Steel Bridge Collaboration

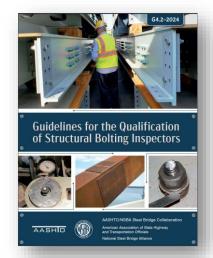
Fall 2025 Meeting

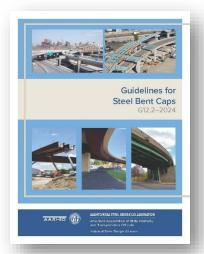
- October 21-23.
- Little Rock, AR

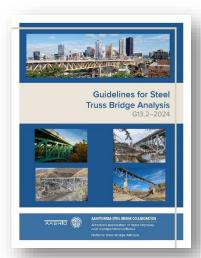
Spring 2026 Meeting

- May 12-14.
- TBD

Fall 2026 Meeting

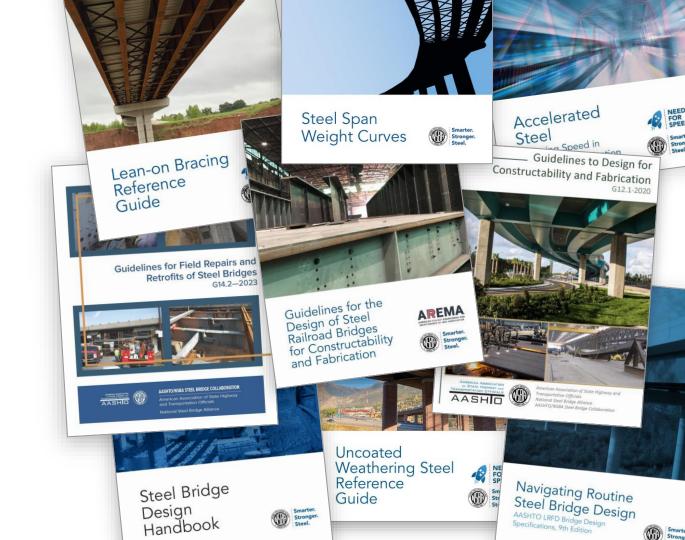

- October 20-22.
- TBD



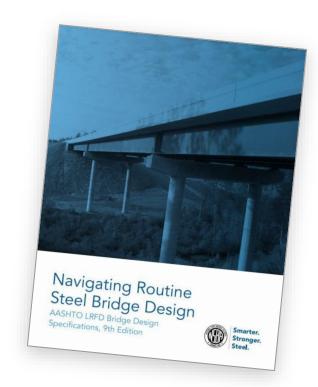

AASHTO/NSBA Collaboration

Updated and New Documents

- G4.2 Guidelines for the Qualification of Structural Bolting Inspectors Released October 2024.
- G12.2 Guidelines for Steel Bent Caps May 2025.
- G13.2 Guidelines for the Analysis of Trusses May 2025.

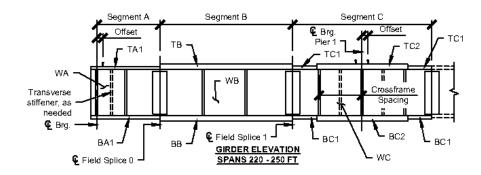


Steel Bridge Resources


NSBA creates technical resources that make it easy for bridge owners to design in steel.

Key Resources For Conceptual Design

 As a "Cliffs Notes" version of the AASHTO BDS for straight unskewed steel bridges, the NSBA Navigating Routine Steel Bridge Design Guide makes designing routine steel bridges easier!



aisc.org/streamlineddesign

Key Resources For Conceptual Design

- New NSBA Standards for 1, 2, 3, & 4 span steel bridges
- Now available on the NSBA website!

Key Resources For Conceptual Design

 Short Span Steel Bridge Alliance standards & design aids are useful tools for simply supported steel bridges with spans <140 ft

shortspansteelbridges.org/resources/espan140

Ohio Design Data Sheets shortspansteelbridges.org/ohio

West Virginia Standards shortspansteelbridges.org/west-virginia-standard-bridge-plans

NSBA Electronic Resource Request

aisc.org/BridgeResources

All of our resources can be found at: www.steelbridges.org

NSBA Continuing Education Efforts

Steel Bridge Forums, Workshops, Webinars, and NASCC/WSBS

Continuing Education

NSBA Steel Bridge Forums – 2025

- North Carolina: February 27, 2025
- Ohio: April 9, 2025
- North & South Dakota: April 23, 2025
- Michigan: October 8, 2025
- California: November 12, 2025
- Others are being planned for 2026

aisc.org/nsba/steel-bridge-forum/

Continuing Education

NSBA Workshops

- Half-day, in-person, technical topic specific
- Examples:
 - Basics of Steel Bridge Design
 - Horizontally Curved Steel Girders
 - Primary Principles
 - Preliminary Design and Analysis
 - Fabrication
 - Methods of Analysis
 - Example Design Computations
 - Construction

Wyoming DOT – Nov 2024

Continuing Education

AISC Webinars

- Upcoming TBD
- Past

Title: Built-Up Press Brake-Formed Tub Girders

Presenter: Ashley Thrall, PhD, PE

Date: February 4, 2025

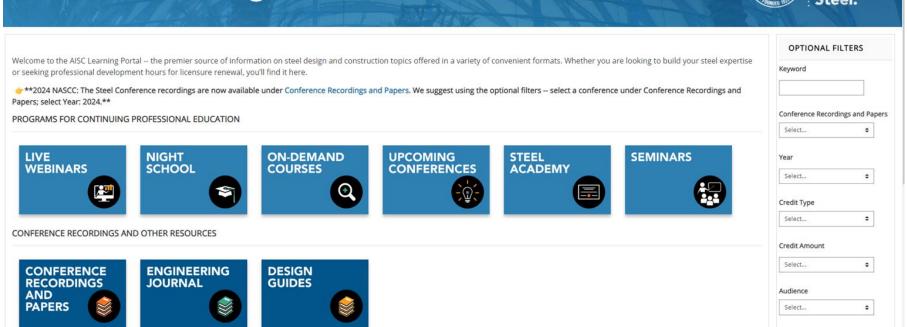
Title: What You Need to Know: Steel Design Revisions in the 10th Edition of the AASHTO LRFD Bridge Design

Specifications

Presenter(s): Mike Grubb, PE and Brandon Chavel, PhD, PE **Title:** Efficient and Integrated Design of Modern Steel Highway

Bridges

Presenter: Francesco Russo, PhD, PE



Educational Resources

AISC Learning Portal - https://learning.aisc.org/

AISC Learning Portal

Registration and Travel Stipends for Owner's

NASCC: THE STEEL CONFERENCE

World Steel Bridge Symposium

QualityCon

Architecture in Steel

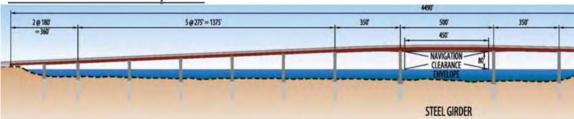
SafetyCon

SEAoK Conference

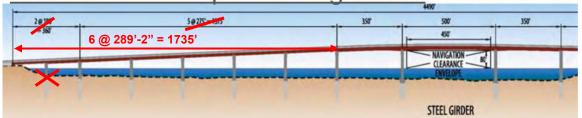
SSRC Annual Stability Conference

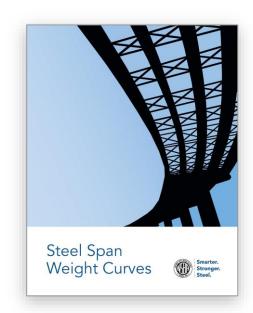
NISD Conference on Steel Detailing

Join us for NASCC: The Steel Conference in Louisville, KY at the


Kentucky International Convention Center April 2-4, 2025.

Registration for NASCC: The Steel Conference 2025 opens Wednesday, January 8th!


Project Assistance and Conceptual Solutions


 NSBA can help with project assistance and we (i.e., the fabricator) can help with preliminary cost estimates. Here is one example.

From TS&L Report:

NSBA Revised Span Arrangement:

Project Assistance and Conceptual Solutions

Total Weight

Unit	Steel Weight (psf)	Deck Area (sq. ft.)	Approximate Steel Quantity (tons)
3-Span Main Unit	115	67600	3887
290' Approach Spans	51	97738	2492
311' Approach Spans	54	87598	2365
Sub Total	-	252937	8744
		Contingency (5%)	437
		Total	9182

Case Studies For NSBA Assistance

Anthony Peterson, PE, ENV SP

- NSBA Senior Steel Bridge Specialist
- Professional Engineer with 30+ years structural engineering experience with bridges of all types
- Envision Sustainability Professional
- Located in Duluth Minnesota

Bridge Project Development

- Conceptual design
- Preliminary design
- Final design
- Construction
- Initial design and construction cost
- Long term costs (inspection, maintenance, repairs)
- Sustainability and resilience
- Assistance from NSBA

Wisconsin Bridge

- Turtle Lake Casino & Campground
- St. Croix Chippewa Tribe
- Steel bridge rehabilitation
- 30' bridge to campground & amphitheater
- Bridge closed with deck removed and significant deterioration
- Tribe contacted steel fabricator seeking assistance
- I visited site and assisted

Wisconsin Bridge

- Inspected bridge
- Described likely options to tribe that included rehabilitation and replacement
- Provided contacts for engineering and repair services and gave advice on what questions to ask
- Reviewed environmental issues to be aware of
- New steel deck, repaired and painted beams, new railing, abutment repair
- Post repair visit

Alaska Bridge

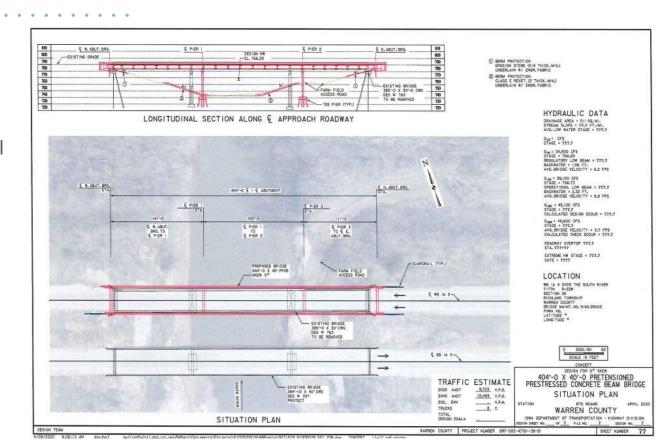
- Wolf Creek Bridge near Craig
- Craig Tribal Association
- Bridge replacement including a temporary detour bridge.
- 25' corrugated steel plate arch culvert
- AISC member fabricator provided temporary steel beam bridge and permanent arch culvert
- Natural streambed maintained

Alaska Bridge

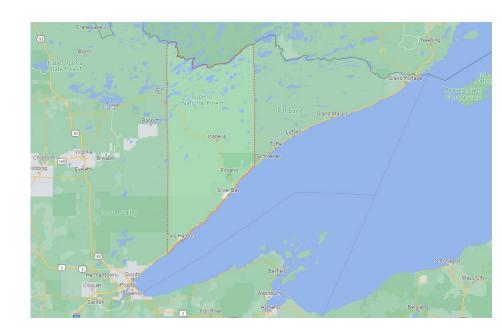
- Low maintenance buried steel bridge
- Galvanized steel arch
- Installed with County workforce
- Lightweight
- Quick long-term solution
- Fish and environmentally friendly

Iowa Bridge

- South River Bridge near Indianola
- Carries northbound lanes of Highway 5
- Owner is Iowa DOT
- Contacted NSBA for assistance during conceptual design stage
- Existing bridge needs replacement and they were interested in alternates
- Low cost and long-term value are key drivers


Iowa Bridge

- Straight channel but bend at bridge
- Mud bottom river that has high scour and erosion potential
- Significant debris carried in river 500+ square mile drainage area



lowa Bridge

- Steel option verses concrete
- Longer main span
- Piers out of river channel reduce construction and long term costs
- Reduced backwater
- Lower impacts to environment
- Concrete option initially chosen due to slightly lower construction cost
- Steel option ultimately chosen

- Hockamin Creek Bridge near Finland
- Carries a rural gravel road
- Owned by Lake County
- Existing pipe culverts washed out by flood
- Need replacement structure quickly
- County interested in more resistant structure to floods and more fish-friendly

- Corrugated steel pipe arch buried structure
- 31' span with 12' rise
- Matches creek width nicely and provides natural bottom for fish
- Maintains existing road profile
- Galvanized steel

- Constructed with County workforce
- Less costly than concrete arch alternative due to constructability
- Low maintenance compared to beam bridge
- Sustainable resilient steel
- Performed excellent during major flood event

ribune

Unlock digital at duluthnewstribune.com/activate

Climate-resilient culverts survive flood

BY JIMMY LOVRIEN Duluth News Tribune

FINLAND, Minn. - It wasn't all that uncommon for Hocksmin Creek to overwhelm the Heffelfinger Road crossing, damaging the road and cutting off residents who live down the road.

The two culverts under the gravel road in Crystal Bay Township, a 200-square-mile township of 600 people just west of Finland, were undersized

and perched above or near the waterline. Erosion issues surrounded the culverts.

- The culverts also prevented brook trout from passing through the creek, a tributary to the Baptism River, which travels through Tettegouche State Park before emptying into Lake Superior.

So state and local officials designed a replacement culvert that considered both brook trout

habitat and 100-year-rain fall events. Completed in fall 2022, the culvert is more of a bridge than a traditional culvert - it has an open bottom and a wide span.

And it's working.

As heavy rain on June 18 washed out dozens of Northland roads and culverts, the Finland area saw some of the heaviest rain totals of between 5 and 6 inches of rain within 24 hours.

Even so, the new

culvert "performed wonderfully," said Tara Solem, district manager of the Lake County Soil and Water Conservation District.

"I'm really impressed at how well they work," said Douglas "Pudge" Perfetto, Crystal Bay's road supervisor. "It saved us a lot of misery."

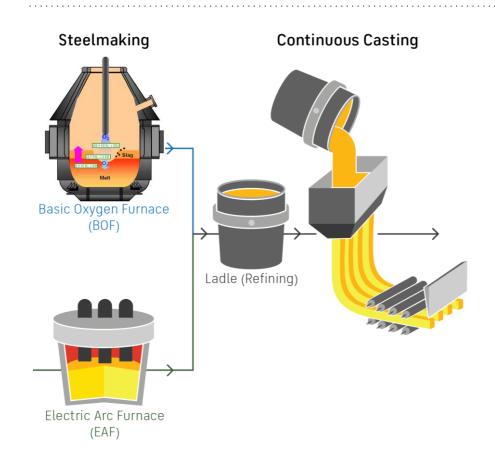
With climate change already increasing precipitation and extreme

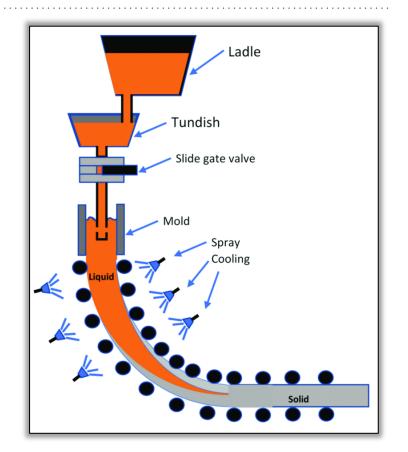
FLOOD on A8

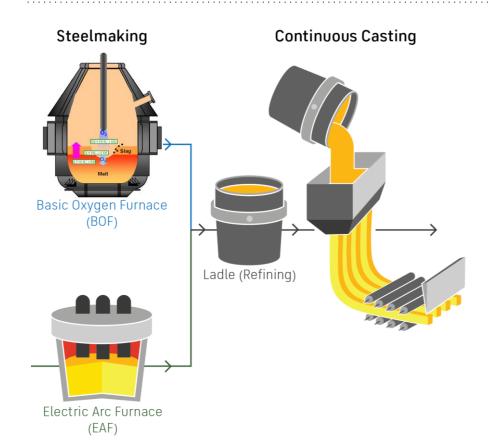
Contributed / Jeff Jasperson, Minnesota Pollution Control Agency

Hockamin Creek flows through a new cuivert on Heffelfinger Road in Crystal Bay township just west of Finland, Minn. The culvert, completed in 2022, is designed to help brook trout reach cold water and is built to withstand 100-year rainfall events.

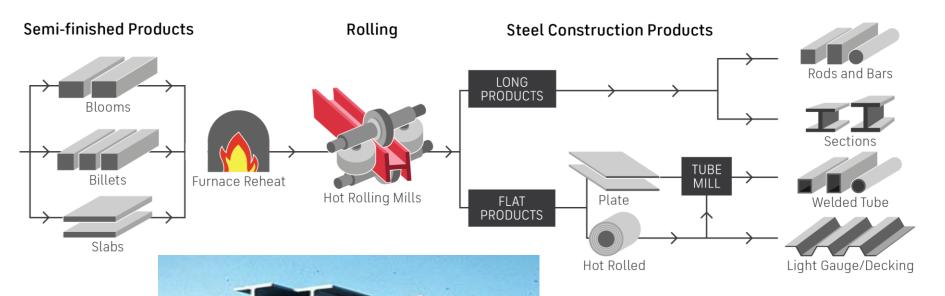
Minnesota & Wisconsin Tribal Infrastructure


Ojibwe Tribal Land


- Bad River and Lac Coutre Oreilles tribes in NW Wisconsin
- Large land areas with extensive road systems and river crossings
- Environmentally sensitive areas with potential impacts from surrounding municipalities and utilities
- Adequately maintaining bridges/culverts to provide for vehicles and wildlife is important
- NSBA is here to assist Visit our booth
- Anthony Peterson, peterson@aisc.org


Basics of Steel Bridge Fabrication

Steel Mill: Melt Shop



Steel Mill: Melt Shop

Steel Mill: Rolling Mill

Rolled Beam vs. Welded Plate Girder

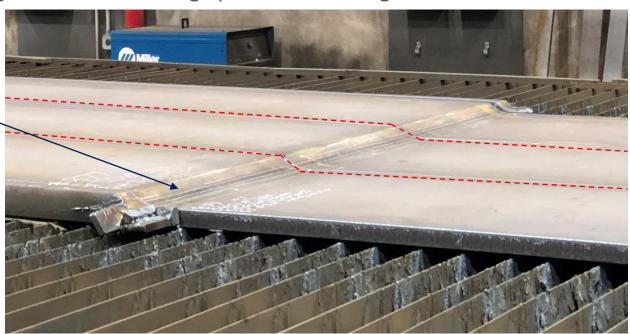
Rolled Beams

- Generally, for shorter spans
- Dependent on mill rolling schedules
- Stocked at Service Centers

Welded Plate Girder

- Usually for longer spans
- Flanges and web welded together
- Made from flat plate material

Raw Material


- First Steps
 - Shop Splice Flange Plates, Web Plates
 - Full Penetration Welds for splicing plates
 - Nesting of Flange Plates
 - Trim Mill Edges of the wider plates
 - Cut Flange Plates to Width from Wider plate


- Flanges
 - Example: Three flanges cut from two large plates welded together

Welded Shop Splice, thicker plate to thinner plate \to \tag{


Assemble plates to form girder

Weld flanges to the web

- Weld flange plates to web plate
 - Completed flange to web weld

• Fit up & weld stiffeners

• Field splice plates

• Blast Cleaning

- Most efficient solution
 - Uncoated Weathering Steel

- Alternative Painting
 - Typically, 2 or 3 coats

Uncoated Weathering Steel Bridge in Arizona

Pinto Creek Bridge

Fabrication

Questions

AISC/NSBA's Standard Plans

General Information

Need:

- Designers routinely face repetitive design decisions regarding material thickness and sizes for the routine steel I-girder bridges
- Variety in typical steel bridge design
- Need for Speed Project

Purpose:

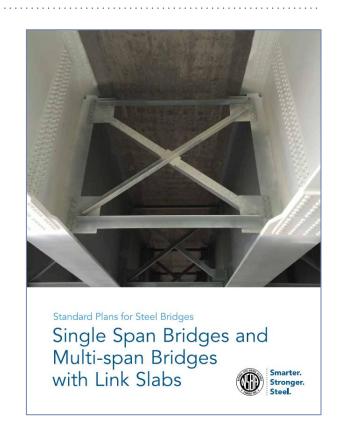
- Provide optimized designs for 1, 2, 3, and 4 span plate girder bridges.
- Ensure cost-efficient and reflect standard plate sizes available from domestic mills.

aisc.org/standard-bridge-plans

General Information

Result:

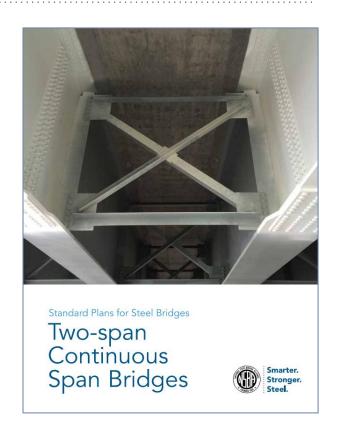
- Nearly 300 full bridge designs
 - Spans range from 80ft to 300ft
 - Girder spacings = 8ft, 10ft, 12ft, 14ft
- Girders
- Stiffeners
- Shear Studs
- Field Splices
- Bearing Reactions
- Camber
- Cross-frames & Diaphragms
- Deck Pour Sequence Considerations
- and much, much more......


aisc.org/standard-bridge-plans

Standard Plans for Steel Bridges

What is in there???

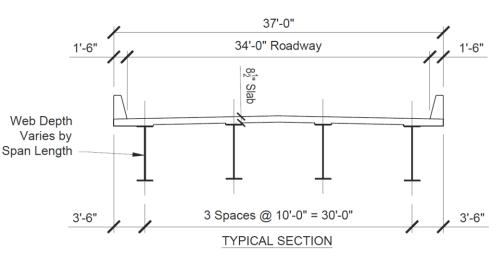
- Single Span Bridges:
 - 80 ft to 140 ft spans
 - 150 ft to 210 ft spans
 - 220 ft to 300 ft spans
 - Cross-frame & Diaphragm Details
 - Lateral Bracing Details
 - Bolted Field Splices
 - Deck Details
 - Link Slab Details



Standard Plans for Steel Bridges

What is in there???

- 2-Span Continuous Bridges:
 - Equal Spans
 - 100 ft to 250 ft spans
 - Deck Pouring Sequence
 - Cross-frame & Diaphragm Details
 - Lateral Bracing Details
 - Bolted Field Splices
 - Deck Details
 - 28 sheets


Typical Cross-sections

Girder Spacing and Overhangs

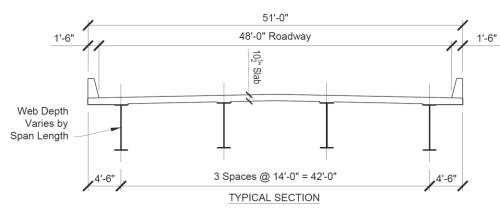
8 ft Girder Spacing

37'-0" 34'-0" Roadway 1'-6" Web Depth Varies by Span Length 4 Spaces @ 8'-0" = 32'-0" 2'-6' 2'-6" TYPICAL SECTION

10 ft Girder Spacing

Overhang = 0.31S

Overhang = 0.35S


Typical Cross-sections

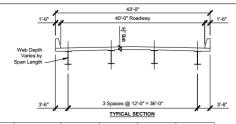
Girder Spacing and Overhangs

12 ft Girder Spacing

14 ft Girder Spacing

Overhang = 0.29S

Overhang = 0.32S


Walk-thru of the Standard Plans

1-Span, 12 ft Girder Spacing

Standard Plans for Steel Bridges

Single Span Bridges and Multi-span Bridges with Link Slabs

Span, ft.	Web (in. x in. x ft.)	T1 (in. x in. x ft.)	T2 (in. x in. x ft.)	B1 (in. x in. x ft.)	B2 (in. x in. x ft.)
80	36 x 0.5 x 80		15 x 1.25 x 80		15 x 1.5 x 80
90	38 x 0.5 x 90		16 x 1.25 x 90		16 x 1.75 x 90
100	45 x 0.5 x 100	18 × 1 × 35	18 x 1.5 x 30	18 ×1 ×24	18 x 1.5 x 52
110	47 x 0.5 x 110	18 x 1 x 40	18 x 1.5 x 30	18 × 1 × 20	18 x 1.75 x 70
120	50 x 0.5 x 120	18 × 1 × 25	18 x 1.5 x 70	18 ×1 ×20	18 x 2 x 80
130	52 x 0.5 x 130	19 x 1 x 30	19 x 1.5 x 70	20 x 1 x 22	20 x 2 x 86
140	56 x 0.5 x 140	20 x 1 x 30	20 x 1.5 x 80	22 × 1 × 25	22 x 2 x 90

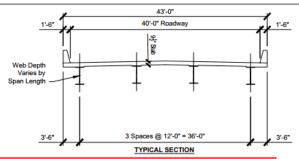
Note: All plates are A709 Gr 50W

		Tran	Bearing Stiffeners					
Span, ft.	Width in.	Thickness in.	Location, ft.	Width in.	Thickness in.			
80				6.75	0.625			
90				7.25	0.75			
100	4.5	0.5	5.5, 94.5	8.25	0.75			
110	4.5	0.5	5.75, 17.5, 92.5, 104.25	8.25	0.75			
120	4.5	0.5	6.25, 18.75, 101.25, 113.75	8.25	0.75			
130	5	0.5	6.25, 19.25, 32.25, 97.75, 110.75, 123.75	8.75	0.875			
140	6	0.5	5.75, 19.75, 33.75, 47.75, 92.25, 106.25, 120.25, 134.25	9.25	0.875			

TRANSVERSE AND REARING STIESENERS

Note: Girder weight is total weight of web and
flanges only, measured between CL brg a
each end. Does not include girder extension
at end bearings, stiffeners, shear studs
splices, bracing, or any other allowances.

		Span	
4	T1	√ T2	, T1
Web		Cross-Frame Spacing	
€ Brg. —	В1	B2	₽1 € Brg.
Transverse Stiffeners as needed		GIRDER ELEVATION	


CROSS-FRAME SPACING
Span, ft. Spacing, ft. Type

22 Diaphragn 24 Diaphragn 26 Diaphragn

_		DEAD AND	LIVE LOAD	REACTION	s
	Span, ft.	DC kips	DW kips	Truck kips	
m	80	82	10	99	
n	90	93	11	100	Г
m	100	103	12	101	Г
n	110	114	13	102	
m	120	126	14	103	
m	130	138	16	103	
	140	150	17	103	

Note: Truck and lane reactions include distribution factors, skew correction, and impact on the truck loading.

Span, ft.	Web (in. x in. x ft.)	T1 (in. x in. x ft.)	T2 (in. x in. x ft.)	B1 (in. x in. x ft.)	B2 (in. x in. x ft.)
80	36 x 0.5 x 80		15 x 1.25 x 80		15 x 1.5 x 80
90	38 x 0.5 x 90		16 x 1.25 x 90		16 x 1.75 x 90
100	45 x 0.5 x 100	18 x 1 x 35	18 x 1.5 x 30	18 x 1 x 24	18 × 1.5 × 52
110	47 x 0.5 x 110	18 x 1 x 40	18 x 1.5 x 30	18 x 1 x 20	18 x 1.75 x 70
120	50 x 0.5 x 120	18 x 1 x 25	18 x 1.5 x 70	18 × 1 × 20	18 x 2 x 80
130	52 x 0.5 x 130	19 x 1 x 30	19 x 1.5 x 70	20 x 1 x 22	20 x 2 x 86
140	56 x 0.5 x 140	20 x 1 x 30	20 x 1.5 x 80	22 × 1 × 25	22 x 2 x 90

Note: All plates are A709 Gr 50W

	TRANSVERSE AND BEARING STIFFENERS							
		Transverse Stiffener Size and Location						
Span, ft.	Width in.	Thickness in.	Location, ft.	Width in.	Thickness in.			
80			***	6.75	0.625			
90				7.25	0.75			
100	4.5	0.5	5.5, 94.5	8.25	0.75			
110	4.5	0.5	5.75, 17.5, 92.5, 104.25	8.25	0.75			
120	4.5	0.5	6.25, 18.75, 101.25, 113.75	8.25	0.75			
130	5 0.5 6.25, 19.25, 32.25, 97.75, 110.75, 123.75		6.25, 19.25, 32.25, 97.75, 110.75, 123.75	8.75	0.875			
140	6	0.5	5.75, 19.75, 33.75, 47.75, 92.25, 106.25, 120.25, 134.25	9.25	0.875			

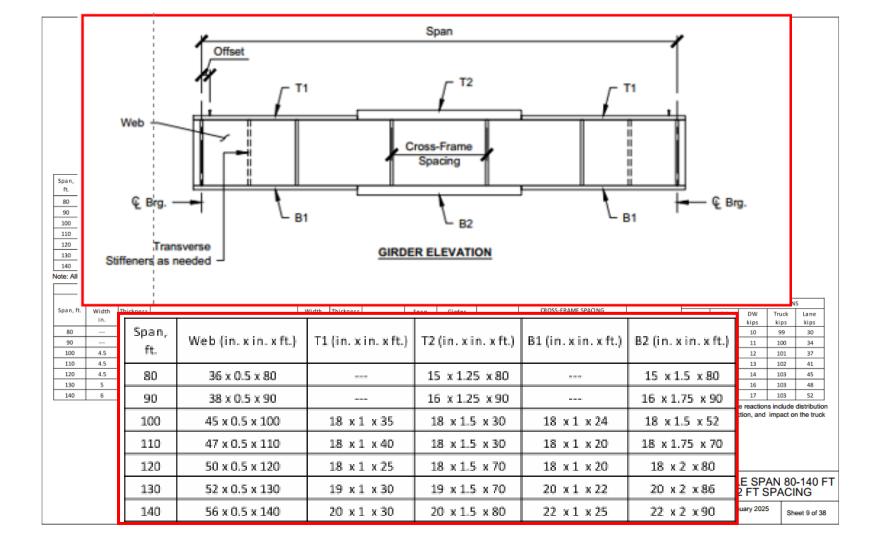
Web Web	T1	_
Web -		
	Cross-Frame Spacing	
© Brg. → B	B2	€ Brg.
Transverse Stiffeners as needed	GIRDER ELEVATION	

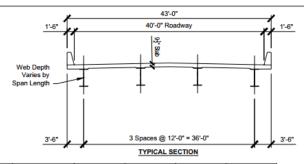
GIRDER WEIGHT					
Span ft.	Girder weight tons				
80	8.06				
90	10.26				
100	11.21				
110	13.20				
120	15.98				
130	18.43				
140	21.40				

Note: Girder weight is total weight of web and flanges only, measured between CL brg at each end. Does not include girder extension at end bearings, stiffeners, shear studs, splices, bracing, or any other allowances.

CROSS-FRAME SPACING						
Span, ft.	Spacing, ft.	Type				
80	20	Diaphragm				
90	22.5	Diaphragm				
100	25	Diaphragm				
110	22	Diaphragm				
120	24	Diaphragm				
130	26	Diaphragm				
140	28	K-Frame				

DEAD AND LIVE LOAD REACTIONS							
Span, ft.	DC kips	DW kips	Truck kips	Lane kips			
80	82	10	99	30			
90	93	11	100	34			
100	103	12	101	37			
110	114	13	102	41			
120	126	14	103	45			
130	138	16	103	48			
140	150	17	103	52			

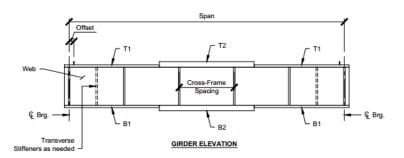

Note: Truck and lane reactions include distribution factors, skew correction, and impact on the truck loading.



SINGLE SPAN 80-140 FT 12 FT SPACING

Issued January 2025 Revision 0

Sheet 9 of 38



Span, ft.	Web (in. x in. x ft.)	T1 (in. x in. x ft.)	T2 (in. x in. x ft.)	B1 (in. x in. x ft.)	B2 (in. x in. x ft.)
80	36 x 0.5 x 80		15 x 1.25 x 80		15 x 1.5 x 80
90	38 x 0.5 x 90		16 x 1.25 x 90		16 x 1.75 x 90
100	45 x 0.5 x 100	18 x 1 x 35	18 x 1.5 x 30	18 x 1 x 24	18 x 1.5 x 52
110	47 x 0.5 x 110	18 x 1 x 40	18 x 1.5 x 30	18 x 1 x 20	18 x 1.75 x 70
120	50 x 0.5 x 120	18 x 1 x 25	18 x 1.5 x 70	18 x 1 x 20	18 x 2 x 80
130	52 x 0.5 x 130	19 x 1 x 30	19 x 1.5 x 70	20 x 1 x 22	20 x 2 x 86
140	56 x 0.5 x 140	20 x 1 x 30	20 x 1.5 x 80	22 x 1 x 25	22 x 2 x 90

Note: All plates are A709 Gr 50W

TRANSVERSE AND BEARING STIFFENERS						
	Transverse Stiffener Size and Location				Bearing Stiffeners	
Span, ft.	Width in.	Thickness in.	Location, ft.	Width in.	Thickness in.	
80				6.75	0.625	
90				7.25	0.75	
100	4.5	0.5	5.5, 94.5	8.25	0.75	
110	4.5	0.5	5.75, 17.5, 92.5, 104.25	8.25	0.75	
120	4.5	0.5	6.25, 18.75, 101.25, 113.75	8.25	0.75	
130	5	0.5	6.25, 19.25, 32.25, 97.75, 110.75, 123.75	8.75	0.875	
140	6 0.5 5.75, 19.75, 33.75, 47.75, 92.25, 106.25, 120.25, 134.25		9.25	0.875		

Stiffeners Girder Weight

Support Reactions

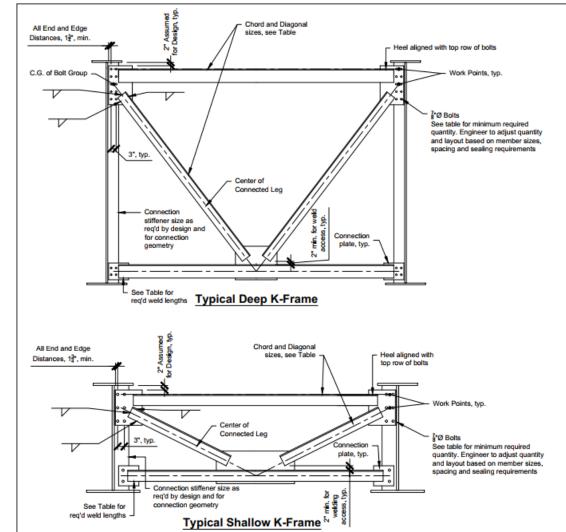
GIRDER WEIGHT					
Span ft.	Girder weight tons				
80	8.06				
90	10.26				
100	11.21				
110	13.20				
120	15.98				
130	18.43				
140	21.40				

Note: Girder reight is total weight of web and langes only, measured between CL brg at each end. Does not include girder extension at end bearings, stiffeners, shear studs, polices, bracing, or any other allowances.

CROSS-FRAME SPACING				
Span, ft.	Spacing, ft.	Type		
80	20	Diaphragm		
90	22.5	Diaphragm		
100	25	Diaphragm		
110	22	Diaphragm		
120	24	Diaphragm		
130	26	Diaphragm		
140	28	K-Frame		

	-				
DEAD AND LIVE LOAD REACTIONS					
Span, ft.	DC DW kips kips		Truck kips	Lane kips	
80	82	10	99	30	
90	93	11	100	34	
100	103	12	101	37	
110	114	13	102	41	
120	126	14	103	45	
130	138	16	103	48	
140	150	17	103	52	

Note: Truck and lane reactions include distribution factors, skew correction, and impact on the truck loading.


Cross Frame Spacing

SINGLE SPAN 80-140 FT 12 FT SPACING

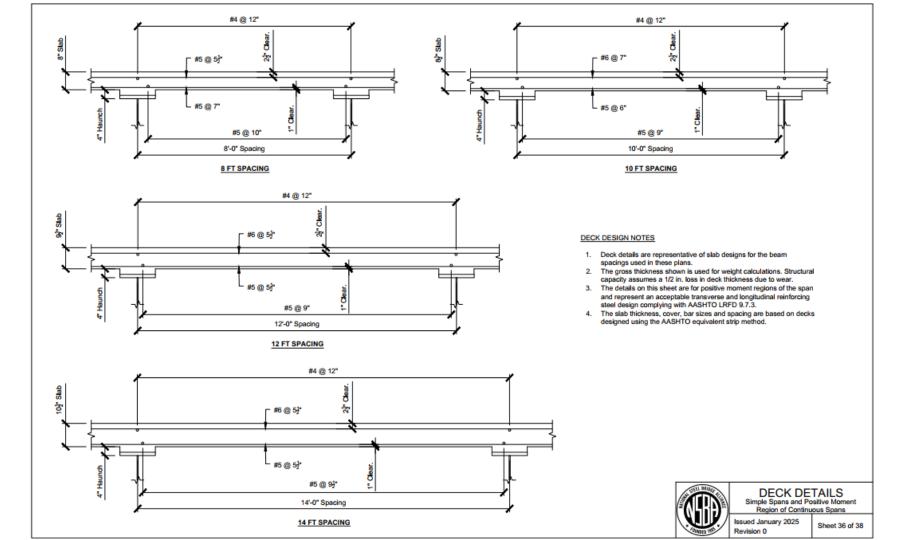
Issued January 2025

Sheet 9 of 38

CROSS-FRAME MEMBER SIZES					
Beam Spacing, ft.	Span ft.		Chord	Diagonal	
8	100-180	K-Frame	L5X5X3/8	L5X5X3/8	
	190-300	X-Frame	L5X5X3/8	L6x6x3/8	
	120-220	K-Frame	L5X5X1/2	L5X5X1/2	
10	230-260	X-Frame	L5X5X1/2	L6X6X3/8	
	260-300	X-Frame	L5X5X1/2	L8X6X1/2	
12	140-250	K-Frame	L6X6X3/8	L5X5X5/8	
12	260-300	X-Frame	L6X6X3/8	L8X8X1/2	
	160-210	K-Frame	L8X6X1/2	L6X6X3/8	
14	220-260	K-Frame	L8X6X1/2	L6X6X1/2	
14	270-290	K-Frame	L8X6X1/2	L6X6X5/8	
	300	K-Frame	L8X6X1/2	L6X6X3/4	

CROSS-	FRAME WELD	DETAILS
Angle Size	Toe Length	Heel Length
L5x5x3/8	2 in. min. See notes regarding toe weld length	4 in.
L5x5x1/2		4.5 in.
L5x5x5/8		4.5 in.
L6x6x3/8		4 in.
L6x6x1/2		5.5
L6x6x5/8		6 in.
L6x6x3/4		7 in.
L8x6x1/2		5.5 in.
L8x8x1/2		6.5 in.

	CROSS-FRAME BOLTED CONNECTION DETAILS					
	Beam Spacing, ft.	Туре	Top Connection		Bottom Connection	
			Total Num Bolts	Vertical Spacing	Total Num Bolts	Vertical Spacing
	8	K-Frame	6	6 in.	2	3 in.
		X-Frame	6	6 in.	6	6 in.
	10	K-Frame	6	6 in.	2	3 in.
		X-Frame	8	4 in.	8	4 in.
	12	K-Frame	6	6 in.	2	3 in.
		X-Frame	8	4 in.	8	4 in.
	14	K-Frame	10	4.5 in.	4	3 in.


Notes:

1. For general notes, see Cross-Frame & Diaphragm Details 1.

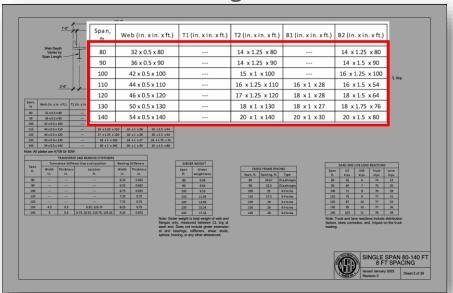
CROSS-FRAME & DIAPHRAGM DETAILS 2

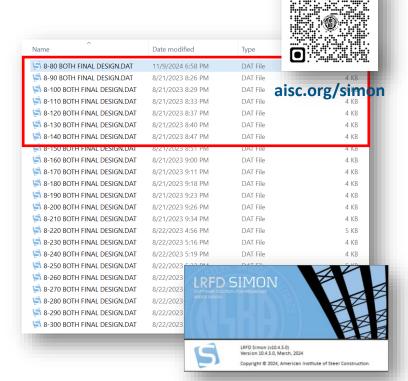
Issued January 2025 Sheet 30 of 38 Revision 0

Standard Plans for Straight I-Girder Bridges

What is next.....

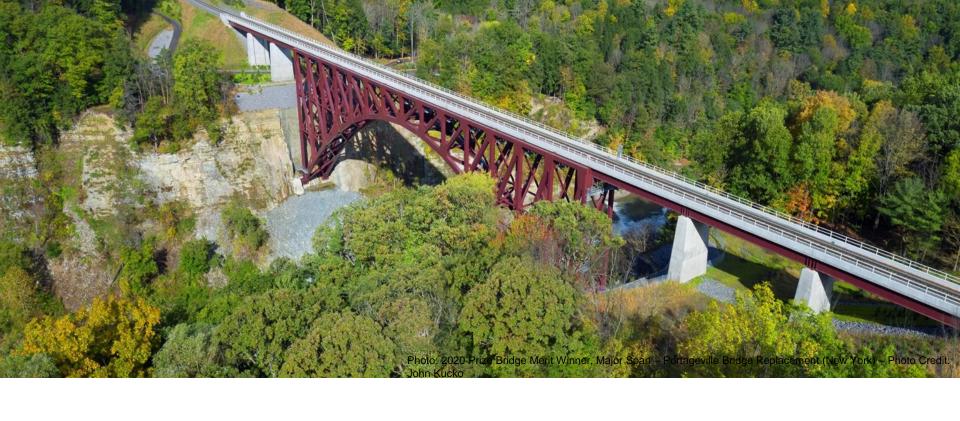
- Examples demonstrating use when spans and/or spacing do not exactly match:
 - 1. Three-Span Bridge Matching a Standard Design
 - 2. Three-Span Bridge with a Thicker Slab
 - 3. Three-Span Bridge with a Non-Standard Beam Spacing and Matching Span Lengths
 - 4. Three-Span Bridge with Matching Beam Spacing but Non-Standard Span Lengths
 - 5. Three-Span Bridge with Unique Beam Spacing, Overhangs, and Span Lengths
 - 6. Three-Span Bridge with Unique Beam Spacing, Overhangs, and Span Lengths with a Skew Index > 0.3
 - 7. Preliminary Curved Girder Bridge
- SIMON files to be packaged with SIMON




aisc.org/standard-bridge-plans

Standard Plans for Straight I-Girder Bridges

What is next.....


LRFD Simon – Design Files

Conceptual Design Kickstarter

NSBA Resources for Conceptual Design

Overview of the Tools

Span Weight Curves

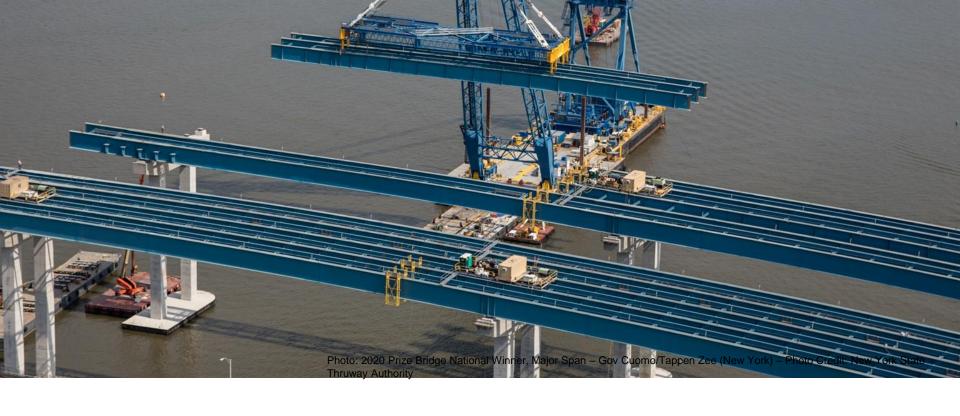
Quickest, superstructure weight

Span Standards

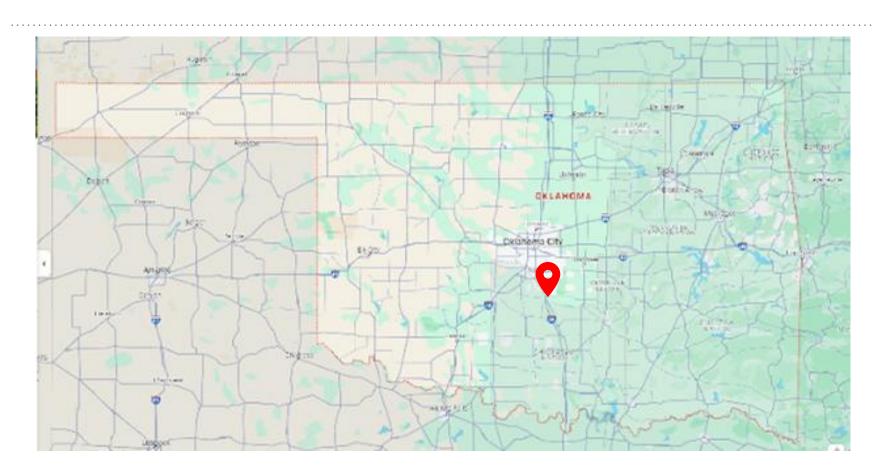
Quick, superstructure weight + plates sizes
 (1, 2, 3, & 4 span configurations)

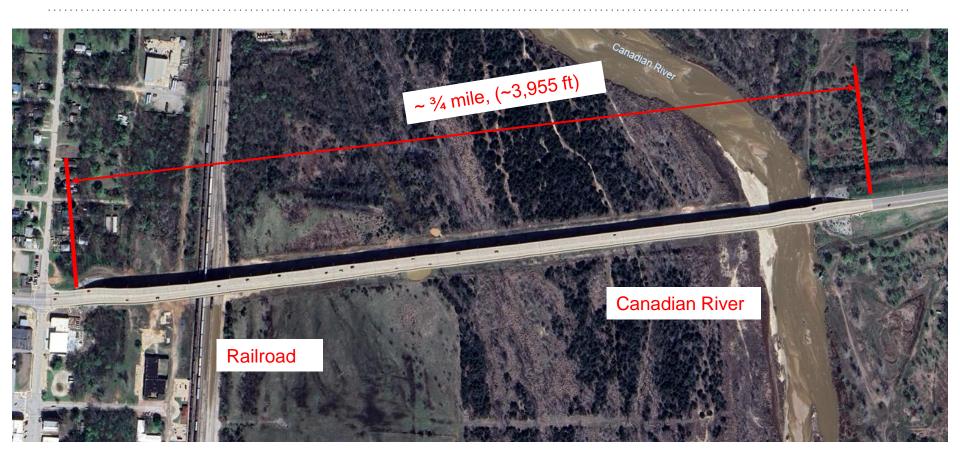
LRFD Simon

 Line girder analysis software, any span config, design & analysis, web optimization

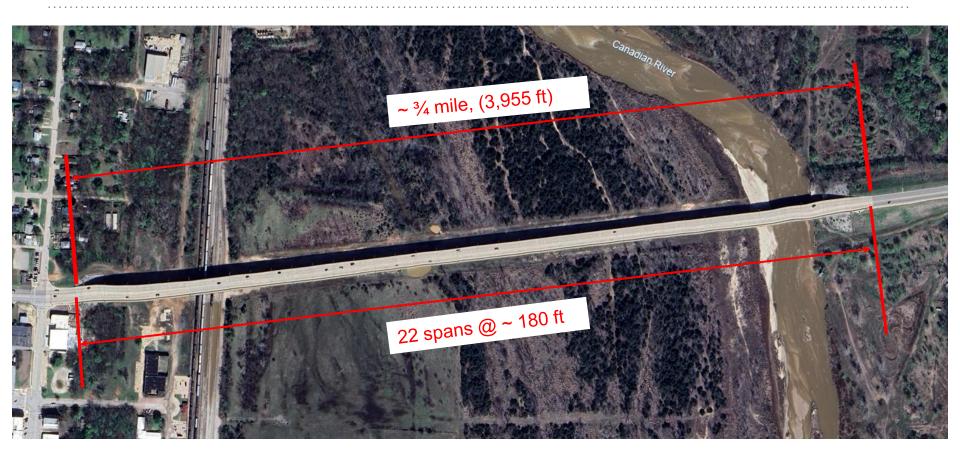


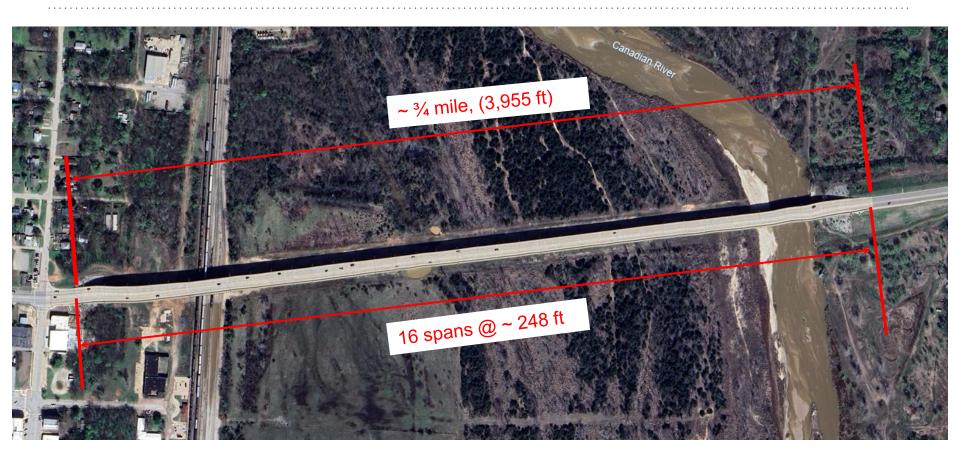
NSBA Steel Span Weight Curves

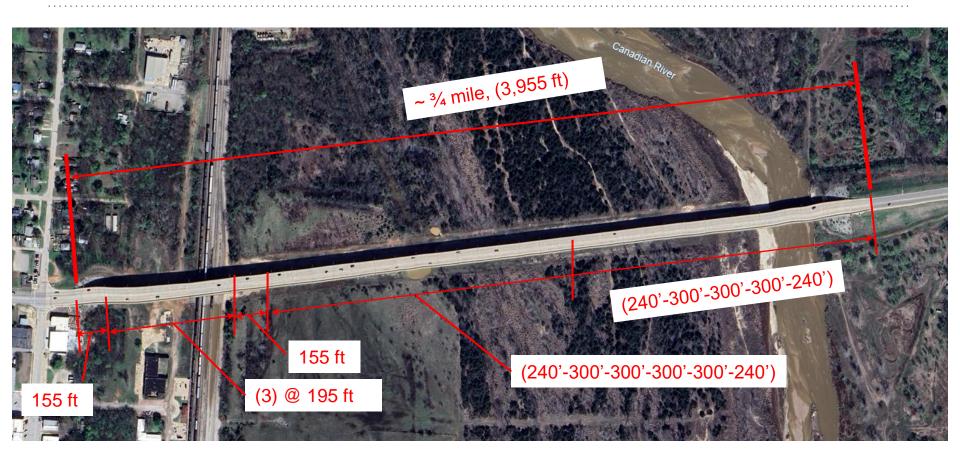

- Derived from 800 economical solutions
- Quickly determine relative costs
- Various girder spacings, span lengths, and number of spans
 - Horizontally curved & straight bridges
 - Single span or multi-span
 - 7' to over 11' spacing
 - 50' to 450' main span
- Download for free @ aisc.org/spanweightcurves



US-77 Over The Canadian River


US-77 Over The Canadian River


US-77 Over The Canadian River


US-77 Over The Canadian River – Option #1

US-77 Over The Canadian River – Option #2

US-77 Over The Canadian River – Option #3

Summary Of Existing Bridge

James Nance Memorial Bridge

- Total length = 3,955 ft
- Width = 70 ft
- 4 total lanes
- Obstacles:
 - Main river channel
 - Railroad

New Bridge Options

- Total length = 3,955 ft
- 6 total lanes
- Width = 96 ft
 - 6 12 ft lanes, 8 ft shoulders on both sides, 4 ft total barrier width, 4 ft median width
- Overhang = 3.5 ft
- Deck area = 3,955 ft x 96 ft = 380,000 ft²

Girder Spacing Options

- <u>Eight</u> girder lines (7 spaces): ~12' 8"
- Nine girder lines (8 spaces): ~11′ − 2″

New Bridge Options

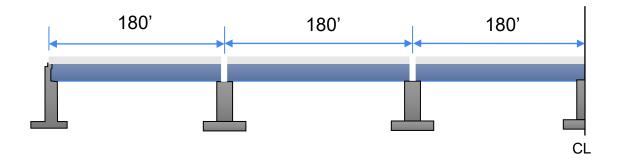
1.) Equal Spans – Simply Supported

- Span length = (22) 180 ft
- Use as a baseline as likely not realistic due to pier locations
- Eight girder lines (7 spaces): ~12' 8"
- Deep girders, but consistent fabrication and erection

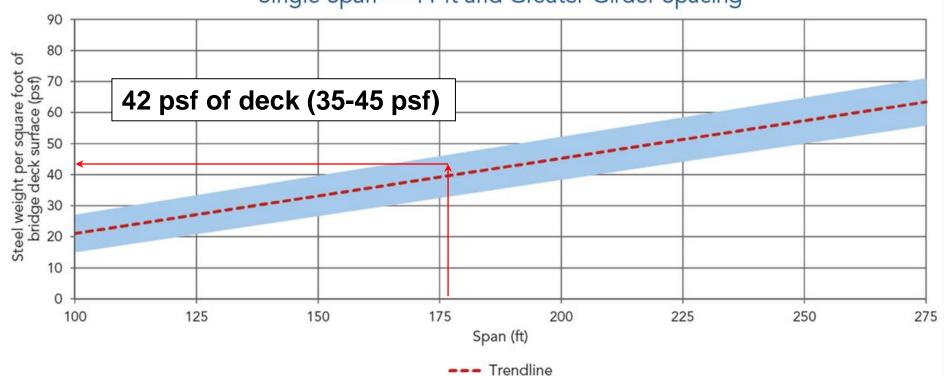
2.) Equal Spans - Continuous - Longer Span Lengths

- Spans length = 248 ft
- Eight girder lines (7 spaces): ~12' 8"
- Fewer piers, but end spans not balanced
- Pier locations may not work with site obstacles

New Bridge Options


3.) Continuous & Longer Spans, Logical Pier Locations

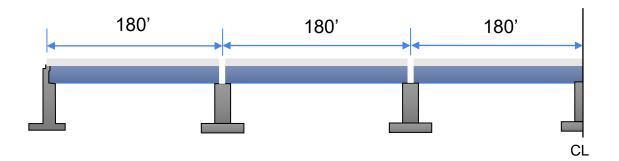
- Spans length = varies over obstacles
- Efficient span arrangement (balanced spans)
- Eight girder lines (7 spaces): ~12' 8"
- Efficient design and fabrication
- Pier locations accommodate site obstacles


Option #1

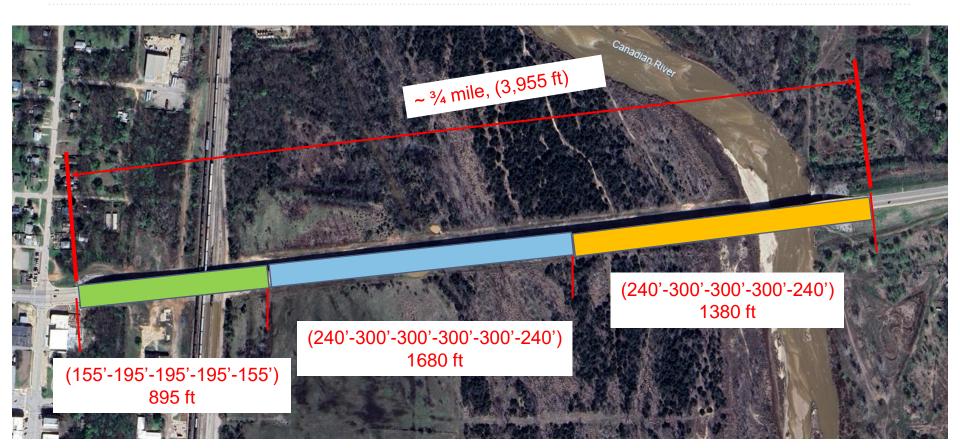
1.) 22 Spans – Simply Supported

- Eight girder lines (7 spaces): ~12' 8"
- Equal span lengths of ~180 ft
- 21 piers

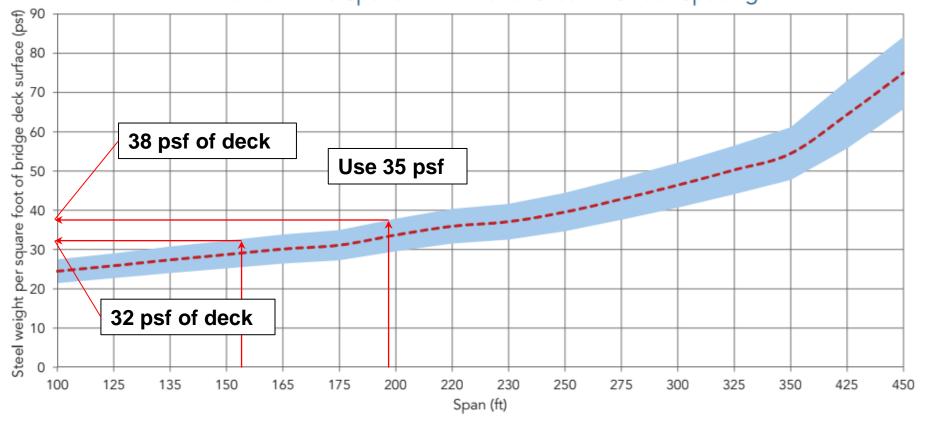
Single Span — 11 ft and Greater Girder Spacing

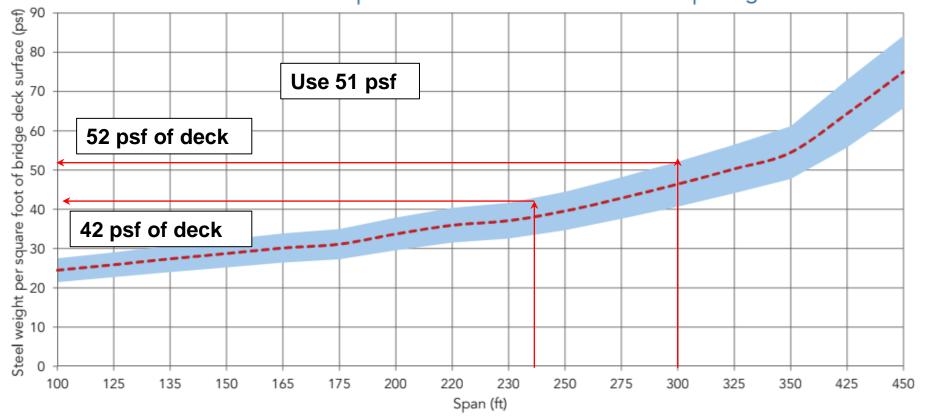

Option #1 - Results

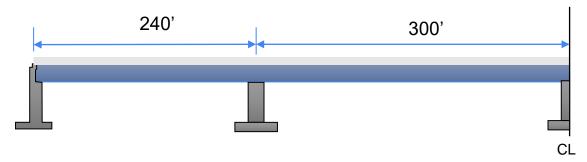
1.) 22 Spans – Simply Supported


- Estimated weight per area = 42 psf
- Total estimated superstructure weight = (380,000 ft² x 42 psf)/2,000 lb/ton = 7,980 tons
- Estimated direct unit cost for fabrication and erection = \$1.92/lb

More on this later


Total estimated superstructure cost = \$30.6M

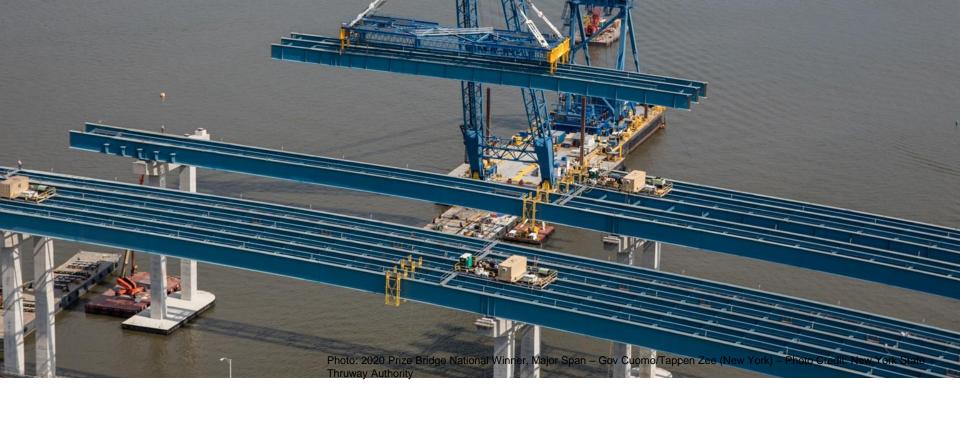

Option #3 - Three "Bridges" – Continuous – Various Span Lengths


Three or More Spans — 11 ft and Greater Girder Spacing

Option #3 - Results

3.) Three Spans – Continuous

- Estimated weight per area = Use 51 psf & 35 psf
- 15 piers, balanced span arrangement
- Total estimated superstructure weight = [((96ft x 895ft)*35psf) + ((96ft x (1680+1380))*51 psf)]/2,000 lb/ton = 8,995 tons
 - Bridge unit over river channel: ((96 ft x 1380 ft)*51 psf] / 2,000 = 3,380 tons
- Estimated direct unit cost for fabrication and erection = \$2.02/lb
- Total estimated superstructure cost = \$36.3M


Summary Of Weight/Span Curve Options

	Option #1	Option #2	Option #3
Average unit weight (psf)	42	44	35 & 51
Total superstructure weight (tons)	7,980	8,360	8,995
Estimated cost per pound	\$1.92	\$2.08	\$2.02
Estimated superstructure direct cost (\$)	30.6M	34.8M	36.3M
# of girder lines	8	8	8
# of piers	21	15	15
Span arrangement	NA	Unbalanced	Balanced
Pier locations	Not realistic with obstacles	Not realistic with obstacles	Realistic with obstacles

Where To Get Pricing Information

aisc.org/certifiedbridgemembers

Option #3 (River Bridge) – Weight to Span Charts vs 4-Span Standards

Option #3 (River Bridge) – NSBA Bridge Standards

	Weight/Span Charts	4 Span Standards
Average unit weight (psf)	51	?
Total superstructure weight (tons)	3,380	?

New NSBA Standards

Standard Designs for Straight I-Girder Bridges – New

Purpose:

- Provide optimized designs for 1, 2, 3, and 4 span plate girder bridges.
- Ensure cost-efficient and reflect standard plate sizes available from domestic mills.
- Nearly 300 bridge designs
 - Spans range from 80ft to 300ft
 - Girder spacings = 8ft, 10ft, 12ft, 14ft
- Next items:
 - Examples demonstrating use when spans and/or spacing do not exactly match.
 - SIMON files to be packaged with SIMON

aisc.org/standard-bridge-plans

Option #3 – NSBA Bridge Standards

AISC STANDARD PLANS FOR STEEL BRIDGES

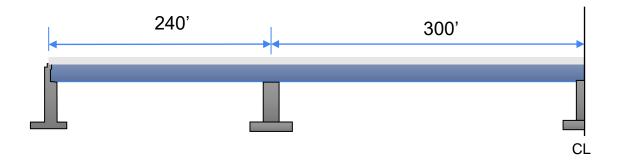
FOUR-SPAN CONTINUOUS SPAN BRIDGES

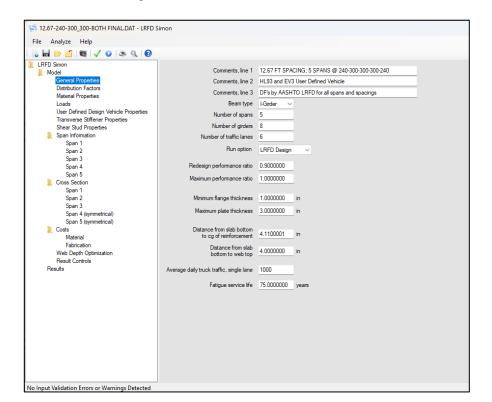
Design Specification: AASHTO LRFD 10th Edition

Release Date: January 2025

DISCLAIMER: This document has not been prepared for conventional use as an engineering or construction document and shall not be used or relied upon for any specific application without competent professional examination and verification of its accuracy, suitability, and applicability by a licensed engineer. The American Institute of Steel Construction, the National Steel Bridge Alliance, and AISC Steel Solutions Center disclaim any liability arising from information provided by others or from the unauthorized use of the information contained in this document.

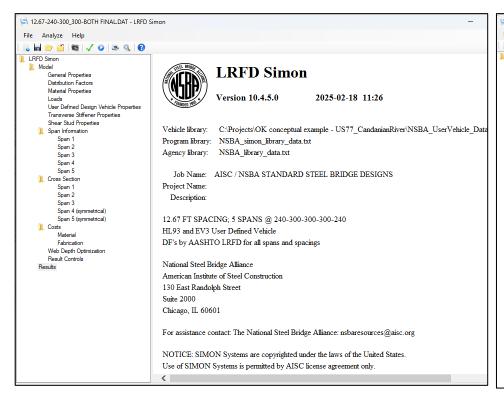
Option #3 (River Bridge) – NSBA Bridge Standards

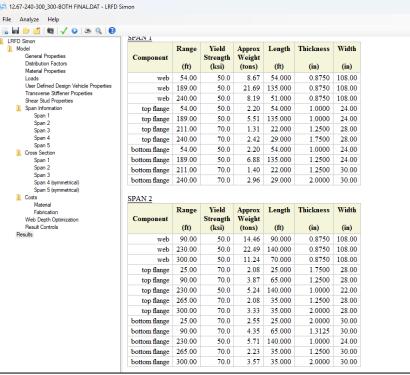

	Weight/Span Charts	4 Span Standards
Average unit weight (psf)	51	50
Total superstructure weight (tons)	3,380	3,296

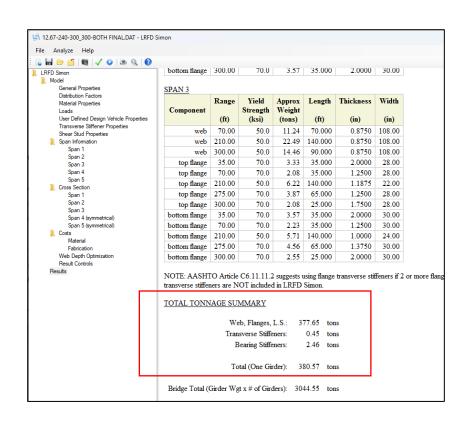


Option #3 (River Bridge) – Weight to Span Charts vs Simon

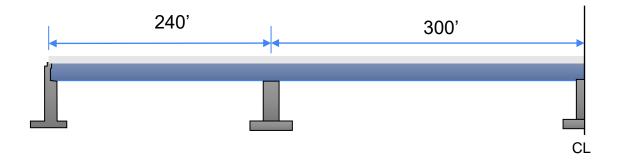
	Weight/Span Charts	4 Span Standards	Simon
Average unit weight (psf)	51	50	?
Total superstructure weight (tons)	3,380	3,296	?




Simon Inputs


\$\int 12.67-240-300_300-BOTH FINAL.DAT - LRFD \$	imon	
File Analyze Help		
LRFD Simon Model	Symmetrical span	No.
General Properties	Symmonical opan	
Distribution Factors	Span length	240.0 ft
Material Properties	Hinge location*	0.0000000 ft
Loads User Defined Design Vehicle Properties	_	
Transverse Stiffener Properties	Noncomposite uniform dead load	1632.00 IB / ft
Shear Stud Properties		
📜 Span Information	Noncomposite partial dead load, A1	
Span 1 Span 2	Distance* to end of A1 load	0.0000000 ft
Span 3		
Span 4	Noncomposite partial dead load, A2	
Span 5	Distance* to beginning of A2 load	0.0000000 ft
Cross Section	D	16 0000000 ft
Span 1 Span 2	Bottom flange cross frame spacing	16.0000000 II
Span 3		
Span 4 (symmetrical)	Top flange fully braced for noncomposite loads	No v
Span 5 (symmetrical)	Noncomposite top	22.2522222
U. Costs Material	flange cross frame spacing	23.2500000 ft
Fabrication	Top flange fully braced for	
Web Depth Optimization	final state	Yes
Result Controls	Final state top flange cross frame spacing	0.0000000 ft
Results	cross frame spacing	
	Construction lateral moment	20.0000000 kip -ft
	*NOTE: Distances are measured from	
	the left end of the current span	
No Input Validation Errors or Warnings Detected		

Simon Results



Simon Results

	Weight/Span Charts	4 Span Standards	Simon
Average unit weight (psf)	51	50	49
Total superstructure weight (tons)	3,380	3,296	3,248

Summary of the Tools

Span Weight Curves

 Quickest, superstructure weight for conceptual design

Span Standards

Quick, superstructure weight + plates sizes
 (1, 2, 3, & 4 span configurations)

LRFD Simon

 Line girder analysis software, any span config, design & analysis, web optimization

Where To Get NSBA Tools & Resources

Span to Weight Curves


aisc.org/spanweightcurves

Span Standards

aisc.org/standard-bridge-plans

LRFD Simon

aisc.org/simon

Uncoated Weathering Steel Bridge in Arizona

Pinto Creek Bridge

Jeff Carlson, PE

Senior Director of Bridge Initiatives 720-440-3011 | carlson@steelbridges.org

Smarter. Stronger. Steel.