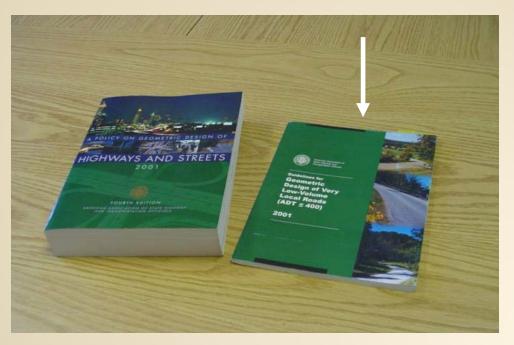
Gravel Road Maintenance Workshop

Jason M. Dietz Pavement and Materials Engineer

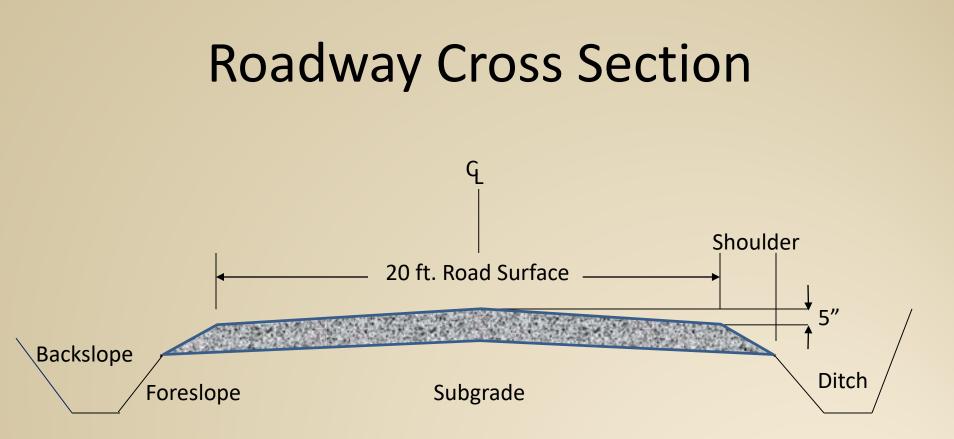
> 20th Annual National Tribal Transportation Conference Tucson, Arizona September 26, 2017


Key Topics of Discussion

Design Issue – Basic Geometrics

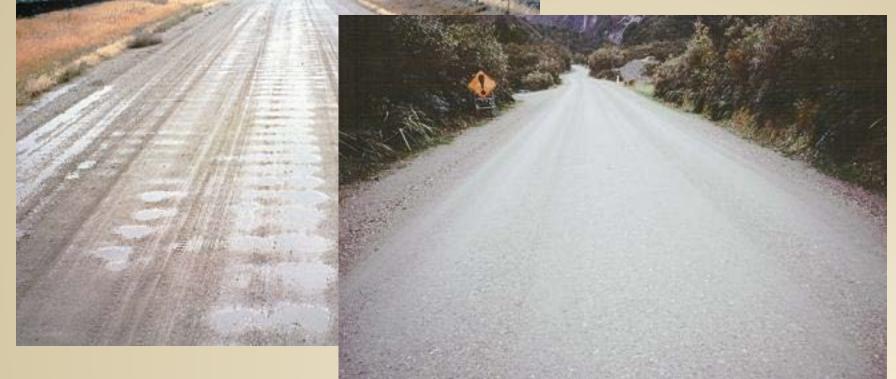
- Be familiar with the AASHTO publication: Geometric Design of Very Low-Volume Local Roads (ADT < 400)
- Commonly called the "Little Green Book"

Design Issue – Basic Geometrics


- "Nearly 80% of the roads in the US have traffic volumes of 400 vehicles per day or less." (quote from Little Green Book)
- It becomes very difficult to construct and maintain these very low-volume roads to a high geometric standard.

AASHTO Guidelines

Design Speed (km/h)	Major Access	Minor Access	Recreational & Scenic	Со	dustrial/ mmercial Access	Resource Recovery	Agricult Acces	
acc	Lowest guideline: Major access requiring roadway width of 20 ft. at design speed of 45 mph				Highest guideline: Agricultural access requiring roadway width of 26 ft. at design speed of 45 mph			
40	.0	18.0	20.0		22.5		24.0)
45	20.0	20.0	20.0		23.0		26.0)
50	20.0	20.0	20.0		24.5			
55	22.0		22.0					
60	22.0							


Note: Total roadway width includes the width of both traveled way and shoulders.

Generally recommended crown for gravel surfaces is 4% (1/2 in. of crown per foot) which is double the crown used in pavements.



Crown (contd.)

Clear illustration of 2% crown on the road to the left and 4% on the road to the right. Water will not drain off an aggregate surface with only 2% crown. This must be addressed in design and during construction.

Some roads have too little crown, some have too <u>much</u>.

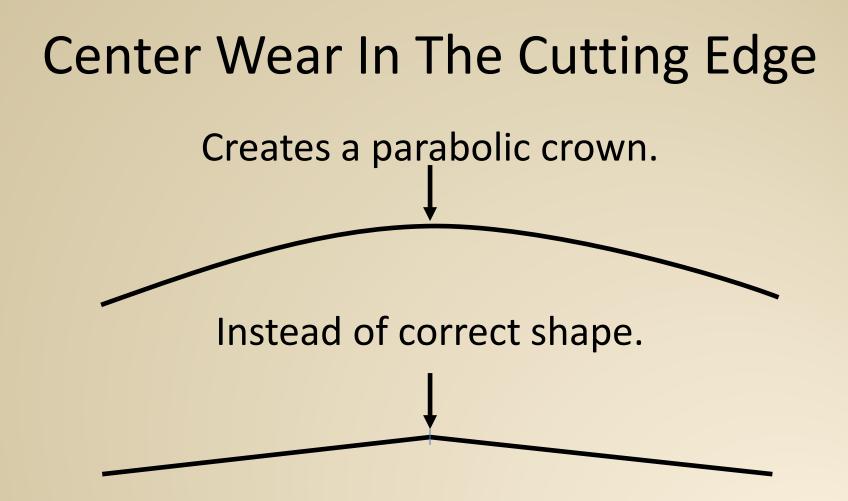
Crown Gauges Are Helpful

Crown (contd.)

There are conflicting views on crown:

- 1/3 to ½ in. per ft.. recommended by NACE manual Blading Aggregate Surfaces – 1986 edition.
- 2 to 6% for "low-type pavements" recommended by AASHTO Green Book pg. 387, 2001 edition.
- 4% by FHWA Gravel Roads Manual

Note: In arid and semi-arid regions, gravel roads may perform with less crown, but don't use less than 3%.



Maintaining Roadway Shape

- Perhaps the most critical issue is keeping cutting edges straight.
- Many operators do not understand the importance of this and/or do not know how to control it.

Once road develop parabolic shape, it becomes hard to change.

This center wear occurred after only six hours of use on badly shaped road.

Reducing Center Wear In The Cutting Edge

Potential solutions: carbide cutting edges or bits.

Gravel Roads – Managing Maintenance

Frequency of blade maintenance:

- Should be managed by observing surface conditions, not just by calendar date.
- Don't delay blade maintenance until surface distress becomes severe.
- In areas of high moisture, vegetation will creep
- A good program of shoulder mowing is essential to gravel road maintenance.

Dealing with High Shoulders

The high shoulder which obstructs drainage – is a real problem on too many roads.

Problem Created By Higher Shoulder

Outstanding Example

How about this shoulder drainage?

Outstanding Example In Confined ROW

Key Topics of Discussion



Drainage

• Basic drainage topics: ditches, culverts and bridges, and underdrains.

Key Topics of Discussion

Management Issue – Surface Gravel

The issue of good surface gravel (aggregate) cannot be emphasized enough. Good aggregate surfacing differs from base and other construction aggregate.

When it's right, problems diminish.

Material Specifications Discussion

- Many state DOTs do not have a surface aggregate specification
- Many specifications that do exist are quite loose and do not allow close enough control of gradation.
- Too often, surface aggregate is perceived as not important, hence quality suffers.
- Study completed in Canada (2003) Samples were taken from several stockpiles being marketed as surface aggregate---contd. next slide

Material Specifications Discussion

 Only 14% of the samples met the companies own specifications when tested by independent labs. Quality control was almost nonexistent.

Information came from *Materials and Performance Specifications for Wearing Course Aggregate on Forest Roads* by G. Legere & S. Mercier.

Surface Gravel (contd.)

Surface aggregate differs from base aggregate in two fundamental ways:

- The need for more plastic fines to serve as binder, and
- Smaller top-sized stone that will remain embedded in the surface.

Surface Gravel (contd.)

Similar ADT, similar geometrics, but different surface materials.

Surface Gravel (contd.)

Corrugation or "washboarding" which is surface distress that is directly related to surface aggregate specification.

Surface Gravel (contd.)

Sample specification comparison:

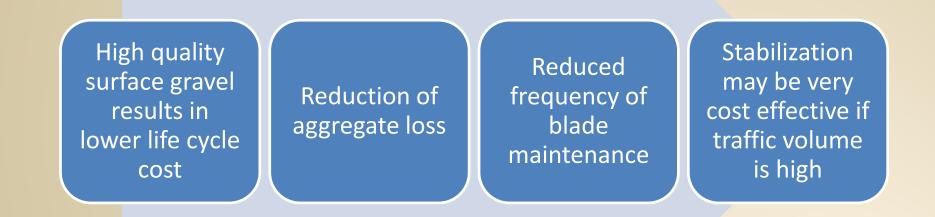
Requirement Sieve	Aggregate Base Course Percent Passing	Gravel Surfacing Percent Passing
1″	100	
3/4 "	80 - 100	100
1/2 "	68 – 91	
No. 4	46 – 70	50 – 78
No. 8	34 – 54	37 – 67
No. 40	13 – 35 Better when modified to 8 -15	13 – 35
No. 200		4 – 15
Plasticity Index	0 - 6	4 - 12

From South Dakota Standard Specifications

Surface Gravel (contd.)

Sample specification comparison:

Gradation No. 3							
Sieve Size	Crushed Gravel	Crushed Stone					
1"	100	100					
3/4 "	95 - 100	95 - 100					
3/8 "	50 - 90	50 - 90					
No. 4	35 - 70	35 – 70					
No. 10	20 - 55	15 - 55					
No. 40	10 - 35						
No. 200	9 - 15	5 - 15					


WisDOT Crushed Aggregate Shoulder Course

Surface Gravel (contd.) AASHTO's Materials Manual – 2001 Edition, Designation M-147 references the following:

Where it is planned that the soil aggregate surface course is to be maintained for several years without bituminous surface treatment..., the engineer should specific a **minimum of 8% passing...No. 200 sieve**..., and should specify a maximum liquid limit of 35 and plasticity index range of 4 to 9 in lieu of the limits given in Section 2.2.2.

Preservation of Gravel – Conserving A Precious Resource

Aggressive Shoulder Maintenance

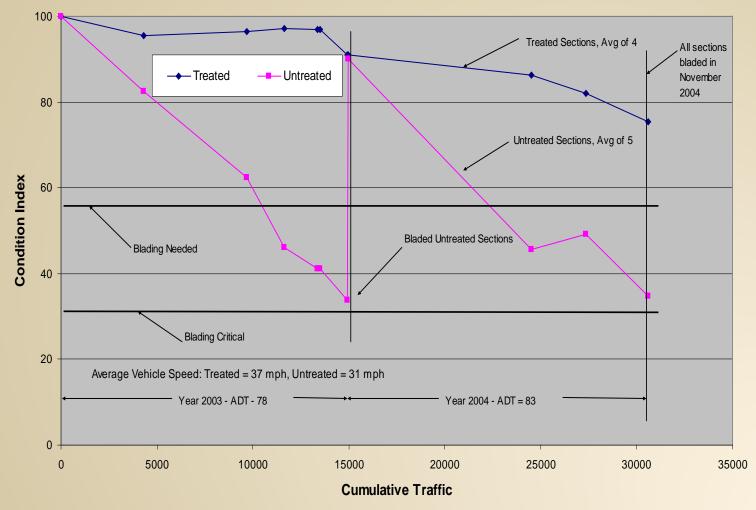
Innovative tools to help reshape the high shoulder and recover gravel.

Key Topics of Discussion

How can we control this?

Dust Abatement & Stabilizing Products

- Survey completed in 2014 nearly 200 named products are being marketed.
- Common types
 - Chlorides (most commonly used)
 - Resins
 - Natural Clays
 - Petroleum Oils
 - Portland Cement


Calcium Chloride

- A salt that draws moisture from the air
- Liquid or Solid
- Liquid has lower concentration rate (<40%)
- Solid has higher concentration rates (>90%)

Benefits

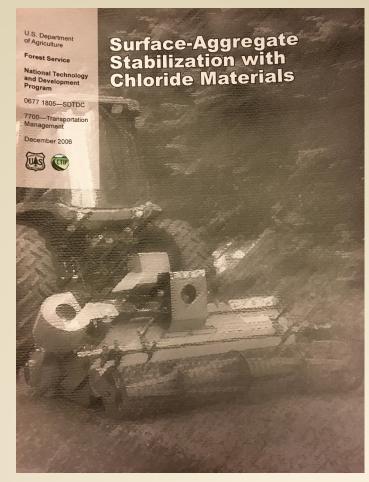
Tucannon River Road Surfacing Performance 2003-2004

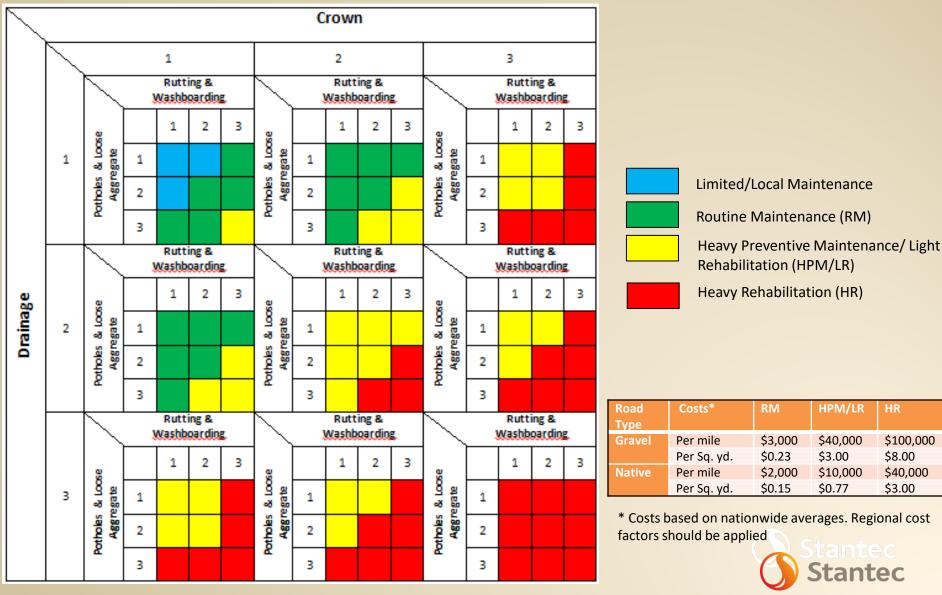
Data from USFS Study

Copyright Monlux and Mitchell 2006

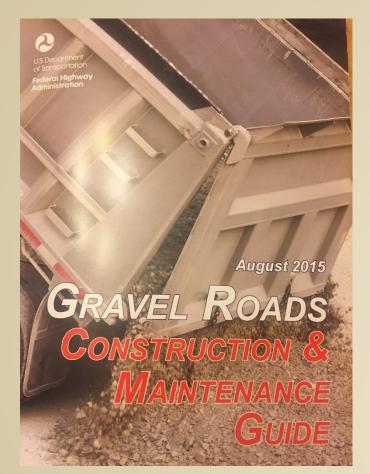
Use on Projects

- Test Sections 2008 & 2009
- Trial Contract 2009
- Implementation 2010 & 2011
- Expanded Use 2012 and 2014




Implementation

References



https://www.fs.fed.us/eng/pubs/pdf/06771805.pdf

Prioritization and Optimization

References

https://www.fhwa.dot.gov/construction/pubs/ots15002.pdf

What questions do you have?

Thank you! For Questions/Comments:

U.S. Department of Transportation Federal Highway Administration

Jason M. Dietz Pavement and Materials Engineer

Construction
Federal Highway Administration
RESOURCE CENTER
O
O

The Office of Technical Services

- FHWA Resource Center
- National Highway Institute
- Technology Partnership Programs

FHWA Resource Center 720-810-0871 Jason.Dietz@dot.gov www.fhwa.dot.gov/resourcecenter