

Steel Bridges for Tribal Communities

National Transportation in Indian Country Conference Anchorage, Alaska September 26, 2023

Dr. Michael G. Barker, PE University of Wyoming & SSSBA, Director of Education

www.shortspansteelbridges.org

Short Span Steel Bridge Alliance – Who We Are

A group of **bridge** and **buried soil structure** industry leaders who have joined together to provide **educational information** on the design and construction of short span steel bridges in installations up to **140 feet in length**.

Rolled Beam & Plate Girder Girders

Press Brake & Folded Plate

Remove Design Obstacles for Short Span Steel Bridges

Overcome Preconception that Concrete is Always Less Expensive in Short Span

Prefabricated Manufactured Steel Bridge Systems and Accelerated Bridge Construction

Develop and Implement Innovative Steel Bridge Systems

Educate Owners, Engineers & Students in Steel Bridge Design

SSSBA – Members

SSSBA – What We Do

- Education (webinars, workshops, forums, conferences)
- Technical Resources (standards, guidelines, best practices)
- Case Studies (economics: steel is cost-effective)
- Simple Design Tools (eSPAN140)
- Answer Questions (Bridge Technology Center)
- Prefabricated Bridge Manufacturers (industry contacts)
- Innovative & ABC Design

ShortSpanSteelBridges.org

SSSBA Education – The 5 Cs

Today's Session

eSPAN140 Design Tool – Steel Bridge Design Made Easy

Bridge Manufacturer Solutions/ABC – I Need a Bridge, Bring Me One

Initial Costs – Dealing with the Preconception on Steel Bridge Costs

Life Cycle Cost Comparison Steel vs Concrete – Long Term Performance & Costs

Sustainability – Carbon Footprint

Local Crews Building Tribal Transportation Facility (TTF) Bridges – Saving \$ and Developing Tribal Workforce

Resources & Opportunities Through the Short Span Steel Bridge Alliance We Only Have Time to Quickly Address These Today: More Information and Reports at ShortSpanSteelBridges.org

Common Simple Span Steel Bridge Types

Corrugated Steel Pipe (Buried Steel Bridge)

Plate Girder

Corrugated Steel Plate (Buried Steel Bridge)

Truss

Rolled Beam Shape

Press-Brake Tub Girder

Traditional Fabricated Steel Bridges

Design Superstructure for Two-Lane, 80 ft Simple Span Bridge

Bridge Need and Basic Information

- Decided by Owner/Engineer:
 - \circ 80 ft Simple Span Steel Girders
 - \circ Two 12 ft Travel Lanes, ADT = 5600 one direction
 - No Clearance Issues / Can Close for Re-Decking
 - Concrete Riding Surface
 - 34 ft Roadway Width
 - $\circ\,$ Jersey Barriers (1 ft 3 $^{1\!\!/_4}$ in wide)

Need an Initial Design for the Bridge SuperStructure

eSPAN140 - Standard Designs for Short Span Steel Bridges - <u>www.ShortSpanSteelBridges.org</u>

Goal:

- Economically competitive (repetitive details and member sizes)
- Expedite the design process
- Homogeneous plate girders
- Lightest weight rolled beams
- Limited depth rolled beams

AASHTO LRFD Bridge Design:

- Strength I,
- Service II,
- Fatigue,
- Constructability,
- L/800 Deflection
- HL-93 Vehicular Live Loading

eSPAN140 - Standard Designs for Short Span Steel Bridges - <u>www.ShortSpanSteelBridges.org</u>

Span lengths 20 ft to 140 ft (in 5 ft increments) Four girder spacing: 6'-0", 7'-6", 9'-0" and 10'-6",

For each of these increments: Steel girders, Shear stud & stiffener layouts, Welding and fabrication details, Elastomeric bearings, and Concrete deck design

eSPAN140 Preliminary Design

**** Can be greater it site geometry allows.

eSPAN140 Preliminary Design

eSPAN140 Preliminary Design

Rolled Beam Recommendation

COMPOSITE ROLLED BEAM WITH PARTIALLY STIFFENED WEB - 4 GIRDERS AT 10' 6" GIRDER SPACING, LIGHTEST WEIGHT

The selected rolled beam section is based on the widest (10'-6") girder spacing used in the development of the standards. The steel industry generally recommende the use of the widest girder spacing possible to reduce the potential number of girder lines for optimum economy.

CDAN (I) 6		DIAPHRAGM SPACING (C)	SHEAR CONNECT	WEICHT	
SPAN (L) - IL	KULLED BEAM	ft	5	F	WEIGHT
80	W36x210	20'	32 @ 6"	9"	15800 lbs

STEEL D.L. CAMBER - in					TOTAL D.L. CAMBER - in				
1	2	3	4	5	1	2	3	4	5
0.178"	0.337"	0.461"	0.540"	0.567"	1.255"	2.375"	3.250"	3.807"	3.997"

Plate Girder Recommendation

COMPOSITE PLATE GIRDER WITH PARTIALLY STIFFENED WELL - 4 GIRDERS AT 10' 6" GIRDER SPACING, HOMOGENEOUS

		PLATE GIRDER SIZE BOTTOM FLANGE POTTOM FLANGE (C)							SHEAR STIFFENERS		TOR MAX. SPAC-		GIRDER
SPAN (L) - ft	TOP FLANGE - in	(F PLATE - in	F) LENGTH - Ft	PLATE - in	LENGTH - Ft	WEB PLATE- in	DIAPHRAGM SPACING (C) - ft	X (NO. REQ'd)	Y - ft. (SPACING)	D	E	INDIVIDUAL GIRDER WEIGHT	т
80 <	16 x 1"	16 x 1"	16'	16 x 1 1/2"	48'	32 x 1/2"	20'	> .	-	47 @ 6"	9"	14,373 lbs	bs

STEEL D.L. CAMBER - in					TOTAL D.L. CAMBER - in				
1	2	3	4	5	1	2	3	4	5
0.178"	0.334"	0.454"	0.530"	0.557"	1.397"	2.618"	3.554"	4.149"	4.355"

Design for Homogeneous Plate Girder Bridge

Buried Steel Bridge Recommendation

Multi-Radius Arch 15x5.5

CDAN If in	DISC # in	BOTTOM SPAN -	WATERWAY	RADIU		
SPAN - IC - III	KISE - IL - III	ft - in	AREA - ft ²	Rt	Rc	RETORN ANGLE
80' 5"	24' 0"	80' 0"	1545.0'	745"	174"	8.1

Press Brake Tub Girder Recommendation

Result

Design Superstructure for Two-Lane, 80 ft Simple Span Bridge

eSPAN140 Design Tool – Manufacturer Solutions

PreFabricated Bridges – "Send Me A Bridge"

Benefits (FHWA Resource Center: Prefabricated Bridge Elements & Systems)

Time Savings: concurrent fabrication, construction & less weather issues

Cost Savings: reduced construction time, reduced traffic delays

Safety Advantages: reduced exposure to hazards

Increased Constructability: elements constructed off-site and put in place

Accelerated Bridge Construction: for most of the manufacturer solutions

Bridge-In-a-Box: convenience and aesthetics for owners

FHWA (http://www.fhwa.dot.gov/bridge/abc/):

"ABC is bridge construction that uses innovative **planning**, **design, materials, and construction methods** in a safe and cost-effective manner to reduce the onsite construction time that occurs when building new bridges or replacing and rehabilitating existing bridges."

ABC improves:

Site Constructability Total project delivery time Work-zone safety for the traveling public

ABC reduces:

Traffic Impacts Onsite construction time Weather-related time delays

Showcase of 3 Different Steel Bridges

Bridge Case Studies Buried Steel Bridge – Big R Modular Beam Bridge - Contech Press-Brake Tub Girder – Valmont

The 5 C's Cost Convenience Construction (ABC) County Built Carbon Footprint

Buried Steel Bridge - Corrugated Steel Plate – Contractor Built

VT Route 2B Bridge Replacement, St. Johnsbury, VT

Contractor:JP SicardFabricator:Big R Bridge

28 day max. trail closure / 50 day road closure for all work

47'11" span x 26'9" rise Arch

Buried Steel Bridge - Corrugated Steel Plate

Buried Steel Bridge - Corrugated Steel Plate

VT Route 2B Bridge Replacement, St. Johnsbury, VT

Deep Corrugated Steel Buried Bridges

I-44 over Entrance Ramp from Route 96

I-44 over CR 1147

Deep Corrugated Steel Buried Bridges

Craig, AK Built by Tribal Workforce

Pre-Fabricated Modular Beam – County Crew Built

Seltice-Warner Bridge, White Road, Whitman County, WA

BigR/Contech Engineered Solutions Fabricator: Whitman County Crew Contractor: Mark Storey, County Engineer **Design Engineer:** ENGINEERED SOLUTIONS

Existing Structure – 30 ft Span, 20 ft Wide

Built/Rebuilt 1952/1986 Wood with Wood Piles & Wood Backwalls Wood Deterioration & Susceptibility to Scour

Replacement Structure Requirements

Increase Hydraulic opening – 30 ft Channel Raise Clearance for 100 yr Flood **Gravel Roadway** Piles with Alluvium Soils / Scouring

NTECH

Foundation and Abutment

County Owned Pile Driver (44 ton/pile) H12x53 Pile Cap

Bridge Structure

35 ft Span x 28 ft Wide 2-Girder Modules / 3 Modules Shipped on One Truck Fully-Assembled CSD & Gravel Simple Connections

SuperStructure Erection

Timing

Excavation, Stream Restoration & Bridge Installation ~ 4 Weeks

Costs

- Steel Superstructure
 Labor & Equipment
 Pile Foundations
 Permitting
 - ure \$ **59,000** ht \$ 70,000 \$ 20,000 \$ 10,000 Total \$159,000

\$ 162.25 / ft²

Concrete Superstructure Alternative \$ 82,000

Press-Brake-Formed Steel Tub Girders

- Modular shallow trapezoidal boxes fabricated from cold-bent structural steel plate
 - \circ $\,$ Weathering steel or galvanized.
- Reduction in fabrication costs due to cold-bending versus welding of the section and mass production.
- Reduces need for stiffeners and cross frames.
- Advantages include:
 - Accelerated with precast deck (install in 1 or 2 days)
 - \circ Modular
 - Simple to fabricate and install

SSSBA Research Started in 2012 First PBTG Bridge Built in 2015 (However, Michigan Installed One in 2004)

Press-Brake Tub Girder – Contractor Built

Barron County, WS

Fabricator: Contractor:

Valmont Larson Construction

Existing Structure

3-Span Timber Slab96 ft LengthDeterioration and Deficient

Replacement Structure Requirements

Two Span 104 ft Length Increased Hydraulic Opening and Clearance

#1 AASHTO STEEL PLATE MATERIAL

AASHTO 11.3.1.2 AASHTO M270. Made in the USA. Steel Plates and Structural Shapes shall conform to ASTM A709/A709M.

#2 AASHTO FORMING

valmont 🏹

STRUCTURES

AASHTO 11.4.3.3 - Bent Plates

Fracture-critical and Non-fracture critical plates and bars shall be cold bent.

#3 AASHTO CAMBERING

AASHTO 11.4.12.2.7

Cold cambering is a customary means of achieving camber... to avoid impact damage to the steel, it's appropriate to introduce bending pressure in a controlled fashion.

valmont 🏹

STRUCTURES

#4 AASHTO WELDING AND SHEAR STUDS valmont 🏹

STRUCTURES

AASHTO 11.3.3

Certified Welders and welded stud shear connectors shall satisfy all requirements of the AASHTO/AWS D1.5M/D1.5 Bridge Welding Code related to material, manufacturing, physical properties, certification, and welding.

#5 AASHTO PROTECTIVE COATING

AASHTO 11.3.7 Galvanizing shall be in accordance with AASHTO M 111M/M 111 (ASTM A123/A123M)

Construction Pictures – Steel PBFTG

Construction Pictures – Deck Forms

Construction Pictures – Deck Pour

Construction Pictures – Finished

Preconception that Concrete is Less Expensive than Steel for Typical Bridges

Many Times Steel is Not Even Considered Owners Paying More Than They Could for Bridges Unwarranted Lack of Competition Not Good

Missouri County Bridges – Where the SSSBA Began

Steel

Concrete

Audrain County, MO Bridge 411 Built 2012 Steel 4 Girders 47.5 ft. Span 24 ft. Roadway Width 2 ft. Structural Depth No Skew

County Crew Built Bridges

Audrain County, MO Bridge 336 Built 2012 Precast 6 Hollowcore Slab Girders 50.5 ft. Span 24 ft. Roadway Width 2 ft. Structural Depth 20° Skew

Side-by-Side Comparison Total Cost of Structure

Steel

Concrete

Total Bridge Costs						
Total bridge costs						
Material	= \$41,764					
Labor	= \$24,125					
Equipment	= \$21,521					
Guard Rail	= \$ 7,895					
Rock	= \$ 8,302					
Engineering	<u>= \$ 8,246</u>					
TOTAL	= \$111,853 (\$97.48 / sq. ft.)					

Total Bridge Cos	<u>sts</u>
Material	= \$67,450
Labor	= \$26,110
Equipment	= \$24,966
Guard Rail	=\$ 6,603
Rock	=\$ 7,571
Engineering	= \$21, <u>335</u>
TOTAL= \$154,0	35 (\$120.83 /

sq.ft.)

Superstructure Only Comparison

Steel

<u>Superstucture Costs</u>					
Material					
Girders	= \$ 2	21,463			
Deck Panels	= \$	7,999			
Reinf Steel	= \$	3,135			
Concrete	= \$	4,180			
Labor	= \$	5,522			
Equipment*	= \$	500			
SUPER TOTAL	= \$ 4	42,799			

Concrete

<u>Superstructure Costs</u>						
= \$	50,765					
= \$	0					
= \$	724					
= \$	965					
=\$	4,884					
=\$	4,000					
=\$	61,338					
	<u>Cost</u> = \$ = \$ = \$ = \$ = \$ = \$					

SUPER TOTAL = 37.54 / sq. ft. SUPER TOTAL = 50.61 / sq. ft.

*County Crane (30 Ton) used for Steel, Larger Rented Crane (100 Ton) Required for Concrete (Equivalent County Crane Cost is \$1520, would result in Steel Cost of \$38.88 / sq. ft.)

True Cost Comparison Steel vs Concrete

25.8% superstructure cost savings

Concrete: Superstructure Cost \$50.61 per sq. ft.

Same bridge conditions:

Steel: Superstructure \$37.54 per sq. ft.

- Structural Depth = 2 ft. (No Difference in Approaches)
- Roadway Width = 24 ft.
- Same Abutments for Both Can be Used (Steel Could Use Lighter)
- Same Guard Rail System
- Same Work Crew

Case Study Bridges: Other Bridges in Audrain County

Superstructure			S	teel					Concrete		
Bridge Number	061	140	149	152	710	AVG	028	057	069	520	AVG
Year Built	2008	2008	2008	2009	2010	AVG	2009	2010	2011	2006	AVG
Span Length	50	50	40	62	64	53.2	36	36	38	40	37.5
Skew	0	0	0	30	35	13	0	15	20	30	16.25
Cost Summary											
- Labor	\$14,568	\$21,705	\$15,853	\$24,765	\$31,949	\$21,768	\$12,065	\$15,379	\$14,674	\$19,044	\$15,291
- Material	\$56,676	\$53,593	\$46,282	\$92,821	\$69,357	\$63,746	\$51,589	\$54,450	\$50,576	\$46,850	\$50,866
- Rock	\$6,170	\$6,216	\$3,694	\$8,235	\$6,501	\$6,163	\$5,135	\$7,549	\$5,378	\$3,621	\$5,421
- Equipment	\$7,487	\$12,026	\$7,017	\$19,579	\$15,266	\$12,275	\$5,568	\$10,952	\$11,093	\$14,742	\$10,589
- Guardrail	\$4,715	\$7,146	\$3,961	\$7,003	\$7,003	\$5,966	\$4,737	\$4,663	\$5,356	\$3,323	\$4,520
Construction Cost	\$89,616	\$100,686	\$76,807	\$152,403	\$130,076	\$109,918	\$79,094	\$92,993	\$87,077	\$87,580	\$86,686
CONST. COST PER FT ²	\$74.68	\$83.91	\$80.01	\$102.42	\$84.68	\$86.09	\$91.54	\$107.63	\$95.48	\$91.23	\$96.32

Missouri DOT State Bridges

Both Bridges Cross US 63 in Boone County

Concrete P/S: 92 ft - 92 ft

Route H (Columbia Airport)

Built 2011

Steel Plate Girder: 98 ft - 98 ft

Discovery Parkway (Columbia)

Built 2007

Missouri DOT State Bridges

Both Bridges Cross US 63 in Boone County

Concrete P/S: 92 ft – 92 ft

Route H (Columbia Airport)

Steel Plate Girder: 98 ft – 98 ft

Discovery Parkway (Columbia)

Built 2011

Built 2007

Letting Date	5/27/2011						Letting Date	9/28/2007				
1800	206-10.00	Class 1 Excavation	85 0	CUYD	\$1,700.00		1560	206100	Class 1 Excavation)
1810	702-10.12	Structural Steel Piles (12 in.)	737 L	LF	\$33,533.50		1580	7021012	Structural)
1820	702-60.00	Pre-Bore for Piling	240 L	LF	\$9,600.00		1570					
1830	702-70.00	Pile Point Reinforcement	22 E	EA	\$2.420.00							
1840	703-20.03	Class B Concrete (Substructure)	76 2	0	of	2	(%) y					
1850	703-42.13	Slab on Concrete I-Girdon	$\sqrt{\ln}$	crea	seur	2.		18/1	rt ²			
1860	703-42.15	sting col Inde	ХП	10101	-+0	=	= \$ 91	.101				
1870	705	Sing ENR COLL		CONC	rete			: 58/	'fto			
1880	706- US	51116		COTTO	_		= \$ 80).50/			1-	\$15,029.00
1890	707	$\sim 201($		STOP							L.S.	\$7,000.00
1900	712-3	5120=		300	•					12	EA	\$2,400.00
1910	715-1							/151001	Vertical Drain at End Bents	2	EA	\$4,000.00
1920	716-1						1720	7162000	Laminated Neoprene Bearing Pad	9	EA	\$10,800.00
1930	716-10		. – T	-11	\$2,480.00		1710	7161003	Laminated Neoprene Bearing Pad (Tapered)	18	EA	\$6,750.00
1940	725-10	spacers	10 E	EA	\$20,000.00		1730	7251000	Corrugated Metal Pipe Pile Spacers	20	EA	\$5,000.00
							1670	7125365A	Intermediate Field Coat (System G)	22100	SQFT	\$30,940.00
							1680	7125370A	Finish Field Coat (System G)	2800	SQFT	\$3,220.00
							1690	7129911	Misc. Fab. Struc. Low Alloy Steel (Aesthethic	s 24330	₩	\$54,742.50
		Tot	al Brid	ge Cost	\$440,632.50				т,	otal Brid	lge Cost =	\$1,057,538.80
			C	ost/f	\$77.71					(Cost/ft ²	\$64.04
									Cost/ft ² with ENR CCI Adju	stment	of 1.139 =	\$72.94

Summary on Initial Costs

SSSBA Conducted Case Studies:

County & State Bridges

Bids & Actual Costs

Case Studies of County Bridges

Others Not Shown Here

County Bridge (Designed by eSPAN140)]		Kansas Departme Shawnee Co 112 feet (5 p
 Boone County, Missouri (Local) High Point Lane Bridge 102 feet (2 lane rural road plate girder bridge) 44" weathering steel plate girders (4 lines) 		Two MoDOT Bridges Cros Concrete P/S: 92 ft – 92 ft	Steel Plate Girder: 98 ft – 98 ft	Competitive DOT used e Constructed Steel Bridge B
Constructed in summer 2013		Image: Control of the contro	Discovery Parkway (Columbia) Letting Date 9/28/2007 1560 256100 1580 7021012 1580 702102 1580 702102 1580 702102 1580 702102 1580 702000 1580 702000 1580 702000 1580 702000 1580 702000 1580 702000 1580 702000 1580 702000 1580 16 1590 702000 160 16 1590 702000 1200 16 1200 16 1200 16 1200 16 1200 16 1200 16 1200 16 1200 16 1200 16 1200 16 1200 16 1200 16 1200<	3 Concrete Bridg Steel = \$ 1 Concrete = \$ 1
		Image: state state Steel = 1 1 1 1 1940 725-10.00 Corrugated Metal Pipe Pile Spacers 10 EA \$20,000,00 Total Bridge Corr 540,632.50 Cost 1 ² - \$77,71	\$ 85.58/ft² 1720 7251000 Corrugated Metal Pipe Pile Spacers 20 6A 50,000 1670 7125365A Intermediate Field Coat (System G) 2200 SQFT 53,040,00 1680 7125370A Finish Field Coat (System G) 200 SQFT 53,040,00 1680 7125392A Mess-Fab-Struc-towAlloy-Steel/Asstehtiely 2830 18 547,4259 Cost/rt* with ENR CCI Adjustment of 1.156 + \$72,584	2

Bridge Numbe

ost Summary

- Labor

- Material

- Equipment

- Guardrail

ONST. COST PER F1

'ear Built Span Length

kew

140 149 152

\$4 715 \$7 146

30 16.25 s14,568 \$21,705 \$15,853 \$24,765 \$31,949 \$21,768 \$12,065 \$15,379 \$14,674 \$19,044 \$15,291 ase Study Bridges: Audrain County, MO Concrete: Superstructure Cost \$50.61 el: Superstructure \$37.54 per sq. ft. \$50,866 25.8% superstructure \$10.952 \$11.093 \$14.742 \$10.589 cost savings \$5,356 \$3.323 \$4.520 \$89,616,\$100,686,\$76,807,\$152,403,\$130,076,\$109,918,\$79,094,\$92,993,\$87,077,\$87,580,\$86,686 \$74.68 \$83.91 \$80.01 \$102.42 \$84.68 **\$86.09** \$91.54 \$107.63 \$95.48 \$91.23 **\$96.32**

- Same bridge conditions
 - Structural Depth = 2 ft. (No Difference in Approaches)
 - Roadway Width = 24 ft.
 - Same Abutments for Both Can be Used (Steel Could Use Lighter)
 - Same Guard Rail System Same Work Crew

State Bridge (Designed by eSPAN140)

ent of Transportation

ounty

Concrete

069

15

\$5.568

520

37 5

AVG

13

35

\$7,487 \$12,026 \$7,017 \$19,579 \$15,266 \$12,275

\$7,003 \$7,003 \$5,966

- plate girder bridge)
- bid process (steel vs. concrete)
- SPAN140 for preliminary design
- l in summer 2014
- ae Bids
- .240 mil

Steel Bridges Compete and Win!

As owners replace their bridge infrastructure, the question of Life Service and Life Cycle Costs routinely comes up between concrete and steel bridge options

The bridge industry does did not have a good answer: Both steel and concrete bridge advocates claim an advantage Anecdotal information is not convincing

Historical Life Cycle Costs of Steel & Concrete Girder Bridges

Examine Historical Life Service (Performance and Maintenance) and Agency Life Cycle Costs (True Agency Costs for a Bridge) of Steel and Concrete Bridges in Pennsylvania

Report on ShortSpanSteelBridges.org

Thank You to PennDOT professionals for their participation Support from AISI, NSBA and AGA

Download the research report at www.ShortSpanSteelBridges.org

Start with a Comprehensive Inventory of Bridges

Initial Costs & Date Built Maintenance Costs and Date Performed End of Service Date – End of Life Model

PennDOT Stepped Up to Participate

PennDOT Database Development

Criteria to Develop LCC Bridge Database

Modern typical bridge structures

Precast I-Beam, Box Adjacent, and Box Spread bridges Steel Rolled Shape and Welded Plate Girder bridges

Bridges built between 1960 and 2010

Bridges with complete and accurate department maintenance records Consider any maintenance cost that is equal to or greater than \$0.25/ft²

Bridges with known initial costs

Bridges with complete and accurate external contractor maintenance and rehabilitation

Initial cost limitation to bridges with initial cost less than \$500/ft² and greater than \$100/ft²

Note: Total Recorded Initial and Maintenance Costs Used

PennDOT Database Development

All Bridges in PennDOT Inventory= 25,403Number of Type Bridges in Inventory= 8,466Number of Types Built 1960-2010= 6,587

Bridges that Meet All Criteria

Bridge Type	Number of Bridges that Meet All criteria	Percentage of 1960 – 2010 database
Steel I Beam	82	14.9%
Steel I Girder	230	22.6%
P/S Box - Adjacent	400	27.8%
P/S Box - Spread	581	26.5%
P/S I Beam	412	29.8%
Total	1705	25.9%

PennDOT Database Bridge Life Model

Bridge Life Model uses Average Deterioration Rates of Total PennDOT Inventory

Assume Bridge Replacement at Condition Rating = 3 Super Structure Condition Rating Used $Deterioration Rate = \frac{(2014 \ Condition Rating) - 9}{2014 - (Year Built)}$

 $Remaining Life = \frac{3 - (2014 \ Condition Rating)}{(Average \ Deterioration \ Rate)}$

Bridge Life = 2014 – (Year Built) + Remaining Life

Bridge Type	Number of Bridges	Deterioration Rate
	1960 - 2010	(Condition Rating
		Loss/Year)
Steel I Beam	550	-0.07114
Steel I Girder	1017	-0.08144
P/S Box - Adjacent	1440	-0.08125
P/S Box - Spread	2196	-0.07988
P/S I Beam	1384	-0.08383

Steel Rolled Precast Box Spread

Agency Life Cycle Costs – An Example

Precast Spread Box-Beam Bridge

BrKey:	30570
Bridge Type:	P/S, Box Beam (Spread)
County:	Shuylkill
Location:	0.75 mi. N of Exit 107(33)
Year Built:	1969
Spans:	3
Length:	176 ft
Deck Area:	7621 ft ²
Super Cond Rating:	5

Average Precast Box Beam – Spread bridge deterioration rate = -0.07988

Remaining Life = $\frac{(3-5)}{-0.07988} = 25 \text{ years}$

$$Bridge Life = 2014 + 25 - 1969 = 70 years$$

Life Cycle Costs

Example Bridge Costs

Actual Costs / Years

Initial Cost:	Year = 1969	Cost = \$141475 (\$18.56/ft ²)	Work: Bridge Construction
External Contract:	Year = 1988	Cost = \$58401 (\$7.66/ft ²)	Work: Latex Overlay
Maintenance 1:	Year = 2009	Cost = \$1891 (\$0.25/ft ²)	Work: Repair Concrete Deck
Maintenance 2:	Year = 2013	Cost = \$2510 (\$0.33/ft ²)	Work: Repair Concrete Deck

Equivalent 2014 Costs / Years

Transform the costs to constant 2014 dollars using Construction Cost						
	Initial Cost:	Year = 0	Cost = \$18.56/ft ² (9806/1269)	= \$143.45/ft ²		
	External Contract:	Year = 19	Cost = \$7.66/ft ² (9806/4519)	=\$ 16.63/ft ²		
	Maintenance 1:	Year = 40	Cost = \$0.25/ft ² (9806/8570)	= \$ 0.28/ft ²		
	Maintenance 2:	Year = 44	Cost = \$0.33/ft ² (9806/9547)	= \$ 0.34/ft ²		

ENR Construction Cost Indices $2014 \text{ Dollars} = \frac{CCI \text{ 2014}}{CCI \text{ 19XX}} 19XX \text{ Dollars}$

Life Cycle Costs

Example Bridge Life Cycle

Initial Cost Contract Maintenance Maintenance 0 20 30 40 50 60 70 years

OMB Circular A-94 2011 30 yr Discount Rate = 2.3%

Present Value Cost for 1 Cycle

 $PVC = \$143.45 + \$16.63(1.023)^{-19} + \$0.28(1.023)^{-40} + \$0.34(1.023)^{-44} = \$154.49/ft^2$

Life Cycle Costs

Example Bridge Life Cycle

OMB Circular A-94 2011 30 yr Discount Rate = 2.3%

Present Value Cost for 1 Cycle

 $PVC = \$143.45 + \$16.63(1.023)^{-19} + \$0.28(1.023)^{-40} + \$0.34(1.023)^{-44} = \$154.49/ft^2$

Perpetual Present Value Cost = Capitalized Cost

$$PPVC = \$154.49 \left[\frac{(1+0.023)^{70}}{(1+0.023)^{70} - 1} \right] = 1.256(\$154.49) = \$193.97/ft^2$$

With Capitalized Costs, Can Compare Bridges Directly

Life Cycle Cost Analyses

The Steel Plate Girder Bridge Data Base

General Information

Maintenance & Contract Work

Initial & LCC

LCC Report

Analysis and Variables Examined in Report Bridge Life PPVC/Capitalized Costs Number of Spans Bridge Length PVC Future Costs Department Maintenance External Contracts

For Steel Bridges Curved vs. Straight Fracture-Critical Protection (Painted, Weathering, Galvanized)

For the entire report: <u>www.ShortSpanSteelBridges.org</u>

Additional LCC report on Galvanizing: <u>www.ShortSpanSteelBridges.org</u>

Bridge Life

Bridge Type	Number of Bridges in Final	Average Year Built	Average Bridge Life	
	LCC Database		(years)	
Steel I Beam	82	1981	81.3	
Steel I Girder	230	1977	79.2	
P/S Box - Adjacent	400	1985	74.0	
P/S Box - Spread	581	1984	79.9	
P/S I Beam	412	1984	74.5	

Steel Rolled Precast Box - Spread

	# Bridges	PPVC	Initial Cost	Future Cost	Avg Length	Avg # Spans	Avg Year Built	Avg Life
Steel I Beam	54	\$232.78	\$194.78	\$0.42	166	2.19	1980	82
Steel I Girder	144	\$273.71	\$226.10	\$0.21	406	4.07	1976	80
P/S Box - Adjacent	282	\$278.30	\$223.74	\$0.96	89	1.31	1987	74
P/S Box - Spread	397	\$256.11	\$210.65	\$2.06	89	1.56	1986	79
P/S I Beam	309	\$217.50	\$174.10	\$0.20	212	2.43	1985	73

Precast I Beam Steel Rolled

Life Cycle Costs – Length<140 ft

Short Length Bridges Short Span Steel Bridge Alliance

	# Bridges	PPVC	Initial Cost	Future Cost	Avg Length	Avg # Spans	Avg Year Built	Avg Life
Steel I Beam	27	\$266.24	\$222.08	\$0.16	84	1.26	1978	82
Steel I Girder	18	\$311.26	\$257.19	\$0.29	119	1.00	1977	81
P/S Box - Adjacent	240	\$292.38	\$235.03	\$0.95	69	1.09	1987	74
P/S Box - Spread	325	\$272.20	\$225.14	\$2.16	64	1.23	1986	81
P/S I Beam	98	\$281.64	\$231.20	\$0.05	104	1.08	1987	77

Steel Rolled Precast Box Spread

Which Type of Bridge is Best?

Which Type of Bridge is Best?

All are "similar" with None "Way Out" of Balance

Overall Weighted Average PPVC = $\frac{252.40}{ft^2}$ – Capitalized Costs

All Bridge Types within 14% of Weighted Average

Standard Deviation Range \$48.02/ft² - \$65.60/ft² [COV \approx 20% - 25%]

Any One Type of Bridge May Be Most Economical for a Given Bridge Project

There is No One Type of Bridge That Clearly Beats the Others

Conclusions

Typical Concrete and Steel Bridges are Competitive on Initial Cost, Future Costs, Life Cycle Costs and Bridge Life

Owners Should Consider Both Steel and Concrete Alternatives for Individual Bridge Projects

What About Sustainability? – Bipartisan Infrastructure Law \$13 Billion to Tribal Bridges

Incorporating Sustainability for Bridge Decision Making

- Life Cycle Sustainability Assessment (Cradle to Grave) of Two Nearly Identical, Functionally Equivalent, Two-Lane Bridges from Whitman County, WA
 - Steel Seltice-Warner

Built 2020, 35 ft – 8 in, Modular Steel, 7 Rolled Beams, Corrugated Gravel Deck, County Crew Built

Concrete – Thornton Depot

Built 2019, 34 ft – 0 in, Precast Prestressed Beams, 8 Beams, Concrete Deck, County Crew Built

• Develop Procedures for Owners or Society that Considers Sustainability Benefits for the Design of Bridges

Bridges – Life Cycle

Steel Seltice-Warner Superstructure Construction Maintenance

Demolition

Concrete Thornton Depot Superstructure Construction Maintenance Demolition

Superstructure Only

Bridge Lifes 75 yrs

Prefabricated Bridges and Installation Equipment and Costs

Maintenance Assumed Identical for Both Bridges (none for 25 yrs, yearly for 50 yrs)

Demolition Equipment and Costs Different for the Two Bridges

- Life Cycle Sustainability Assessment
 Establish Criteria and Benchmarks
 CO₂e, Energy, Recycling & Wastestream Metrics, Life Cycle Costs
 Life Cycle Bridge Results
- Procedure that Considers Sustainability Benefits for the Design of Bridges Monetizing Sustainability Benefits
 Equivalent Cost Decision Making

Emissions and Energy Consumption Metrics

- Fabricated Material and Component Emissions & Energy Consumption Metrics from Environmental Product Declarations (EPDs).
- Equipment Emissions & Energy Consumption Metrics from Analysis

Material	Description	Emissions (kgCO2e/ton)	Energy Consumption (MJ/ton)		
Concrete	Precast Concrete Component	310.3	3268		
	Grout	614.2	4545		
Steel	Hot Rolled Steel Shapes	1106.8	16840		
	Plates	1569.4	20804		
	Steel Tubes	2168.2	25611		
	Steel Deck	2150.0	27208		
	Guardrail*	2150.0	27208		
Other	#7 Gravel (1/2" x #4)	1.41	30.8		

Construction Equipment	Description	Emissions (kgCO2e/hr)	Energy Consumption (MJ/hr)	
Equipment	Light Equipment	50.8	724.5	
	Heavy Equipment	71.1	1014.3	

Superstructure Emissions and Energy Consumption

Steel Seltice-Warner

Bridge Component:	Weight (tons):	Emissions (kgCO2e/ton)	Energy (MJ/ton)	Length Factor	Emissions (kgCO2e)	Energy (MJ)
Stringers	9.337	1,106.8	16,840.1	0.953	9,851	149,892
Diaphragm	0.916	1,106.8	16,840.1	1.000	1,013	15,418
Tubes	0.308	2,168.2	25,610.8	0.953	637	7,523
Center Splice Plate	0.152	1,569.4	20,803.6	1.000	239	3,172
Side Dam	0.244	1,569.4	20,803.6	0.953	365	4,838
End Angle	0.274	1,106.8	16,840.1	1.000	304	4,621
Bridge Deck	4.699	2,150.0	27,208.3	0.953	9,631	121,880
Guardrail	0.360	2,150.0	27,208.3	0.953	737	9,328
Bridge Rail Post	0.578	1,106.8	16,840.1	1.000	639	9,725
Post Block	0.096	1,106.8	16,840.1	1.000	107	1,621
Gravel	22.655	1.4	30.8	0.953	30	665
Steel Weight	16.96			Sub-Total Superstructure	23,554	328,683
Reinf Concrete Weight	•					

Concrete Thornton Depot

Bridge Component:	Weight (tons):	Emissions (kgCO2e/ton)	Energy (MJ/ton)	Length Factor	Emissions (kgCO2e)	Energy (MJ)
Precast Elements	103.840	310.3	3,267.7	1.000	32,217	339,316
Misc. Steel Detail Items	0.338	2,150.0	27,208.3	1.000	727	9,196
Grout	0.999	614.2	4,545.0	1.000	614	4,540
Guardrail	0.360	2,150.0	27,208.3	1.000	773	9,785
Bridge Rail Post	0.387	1,106.8	16,840.1	1.000	428	6,517
Steel Weight	1.08			Sub-Total Superstructure	34,759	369,355
Reinf Concrete Weight	103.84					

Equipment Emissions and Energy Consumption

Steel Seltice-Warner

Construction Equipment	t Hours on Site		Emissions (kgCO	2e/hr)	Energ	gy (MJ/hr)	Usage Factor	Usage Factor			Energy (MJ)
Heavy Equipment		130		71.1		1,014.3		0.30		2771	39558
Light Equipment		105		50.8	50.8 724			0.30		1599	22822
							Sub-Total Constru	ction		4,370	62,379
Maintenance	Hours on Site/yr Emissions (kgCO2e/hr) En			Energy (MJ/hr)	Usage Factor		EoL Yrs of Maint		Emissions (kgCO2e)	Energy (MJ)
Heavy Equipment	3	3	71.1		1,014.3		1.00	50		10658	152145
Light Equipment	3	8	50.8		724.5		1.00	50		7613	108675
						Sub-Total Ma	intenance			18,270	260,820
Demolition	Hours on Site		Emissions (kgCO	2e/hr)	Ener	gy (MJ/hr)	Usage Factor		Em	issions (kgCO2e)	Energy (MJ)
Heavy Equipment		20		71.1		1,014.3		0.50		711	10143
Light Fauipment		15		50.8		724.5		0.50		381	5434
	Sub-Total Yearly Demolition 1.091										
Concre	te Tho	rnt	ton Dep	oot			Sub rotal really E			_,	
	te Tho	rnt	ton Dep)Ot 2e/hr)	Energ	y (MJ/hr)	Usage Factor		Emi	issions (kgCO2e)	Energy (MJ)
Construction Equipment	te Tho	128	Emissions (kgCO2	2e/hr)	Energ	y (MJ/hr) 1,014.3	Usage Factor	0.30	Emi	issions (kgCO2e)	Energy (MJ) 38949
Construction Equipment Heavy Equipment Light Equipment	te Tho	128 134	Emissions (kgCO2	2e/hr) 71.1 50.8	Energ	;y (MJ/hr) 1,014.3 724.5	Usage Factor	0.30	Emi	issions (kgCO2e) 2728 2040	Energy (MJ) 38949 29125
Construction Equipment Heavy Equipment Light Equipment	te Tho	128 134	Emissions (kgCO2	2e/hr) 71.1 50.8	Energ	y (MJ/hr) 1,014.3 724.5	Usage Factor Sub-Total Construct	0.30 0.30 ction	Emi	issions (kgCO2e) 2728 2040 4,768	Energy (MJ) 38949 29125 68,074
Construction Equipment Heavy Equipment Light Equipment	te Tho	128 134	Emissions (kgCO2e/hr)	2e/hr) 71.1 50.8	Energ MJ/hr)	y (MJ/hr) 1,014.3 724.5 Usage Factor	Usage Factor Sub-Total Construct	0.30 0.30 Ction EoL Yrs of Maint	Emi	issions (kgCO2e) 2728 2040 4,768 Emissions (kgCO2e)	Energy (MJ) 38949 29125 68,074 Energy (MJ)
Construction Equipment Heavy Equipment Light Equipment	te Tho	128 134 Emi	Emissions (kgCO2 ssions (kgCO2e/hr)	DOT 2e/hr) 71.1 50.8	Energ MJ/hr) 1,014.3	y (MJ/hr) 1,014.3 724.5 Usage Factor	Usage Factor Sub-Total Construct 1.00	0.30 0.30 Ction EoL Yrs of Maint 50	Emi	issions (kgCO2e) 2728 2040 4,768 Emissions (kgCO2e) 10658	Energy (MJ) 38949 29125 68,074 Energy (MJ) 8 152145
Construction Equipment Heavy Equipment Light Equipment Heavy Equipment Heavy Equipment Light Equipment	te Tho	128 134 Emi	Emissions (kgCO2 ssions (kgCO2e/hr) 71.1 50.8	DOT 2e/hr) 71.1 50.8	Energ MJ/hr) 1,014.3 724.5	y (MJ/hr) 1,014.3 724.5 Usage Factor	Usage Factor Sub-Total Construct 1.00	0.30 0.30 Ction EoL Yrs of Maint 50 50	Emi	issions (kgCO2e) 2728 2040 4,768 Emissions (kgCO2e) 10658 7613	Energy (MJ) 38949 29125 68,074 Energy (MJ) 8 152145 3 108675
Construction Equipment Heavy Equipment Light Equipment Maintenance	Hours on Site	128 134 Emi	Emissions (kgCO2e/hr) 71.1 50.8	2e/hr) 71.1 50.8 Energy (1	Energ MJ/hr) 1,014.3 724.5	y (MJ/hr) 1,014.3 724.5 Usage Factor Sub-Total Ma	Usage Factor Sub-Total Construct 1.00 1.00	0.30 0.30 Ction EoL Yrs of Maint 50 50	Emi	issions (kgCO2e) 2728 2040 4,768 Emissions (kgCO2e) 10658 7613 18,270	Energy (MJ) 38949 29125 68,074 Energy (MJ) 8 152145 3 108675 260,820
Construction Equipment Heavy Equipment Light Equipment Maintenance	te Tho	128 134 Emi	Emissions (kgCO2e/hr) 71.1 50.8 Emissions (kgCO2	2e/hr) 71.1 50.8 Energy (I	Energ MJ/hr) 1,014.3 724.5 Energ	y (MJ/hr) 1,014.3 724.5 Usage Factor Sub-Total Ma	Usage Factor Sub-Total Construct 1.00 1.00 uintenance	0.30 0.30 Ction EoL Yrs of Maint 50 50	Emi	issions (kgCO2e) 2728 2040 4,768 Emissions (kgCO2e) 10658 7613 18,270 issions (kgCO2e)	Energy (MJ) 38949 29125 68,074 Energy (MJ) 8 152145 3 108675 260,820 Energy (MJ)
Construction Equipment Heavy Equipment Light Equipment Maintenance Heavy Equipment Light Equipment Demolition Heavy Equipment	te Tho	128 134 Emi	Emissions (kgCO2e/hr) 71.1 50.8 Emissions (kgCO2	2e/hr) 71.1 50.8 Energy (I 2e/hr) 71.1	Energ MJ/hr) 1,014.3 724.5 Energ	y (MJ/hr) 1,014.3 724.5 Usage Factor Sub-Total Ma sy (MJ/hr) 1,014.3	Usage Factor Sub-Total Construct 1.00 1.00 intenance Usage Factor	0.30 0.30 ction EoL Yrs of Maint 50 50 0.50	Emi	issions (kgCO2e) 2728 2040 4,768 Emissions (kgCO2e) 10658 7613 18,270 issions (kgCO2e) 1421	Energy (MJ) 38949 29125 68,074 Energy (MJ) 8 152145 3 108675 3 260,820 Energy (MJ) 20286
Construction Equipment Heavy Equipment Light Equipment Light Equipment Light Equipment Demolition Heavy Equipment Light Equipment Light Equipment	te Tho	128 134 Emi	Emissions (kgCO2 ssions (kgCO2e/hr) 71.1 50.8 Emissions (kgCO2	2e/hr) 71.1 50.8 Energy (I 2e/hr) 71.1 50.8	Energ MJ/hr) 1,014.3 724.5 Energ	y (MJ/hr) 1,014.3 724.5 Usage Factor Sub-Total Ma y (MJ/hr) 1,014.3 724.5	Usage Factor Sub-Total Construct 1.00 1.00 intenance	0.30 0.30 ction EoL Yrs of Maint 50 50 0.50 0.50	Emi	issions (kgCO2e) 2728 2040 4,768 Emissions (kgCO2e) 10658 7613 18,270 issions (kgCO2e) 1421 508	Energy (MJ) 38949 29125 68,074 Energy (MJ) 8 152145 3 108675 260,820 Energy (MJ) 20286 7245

Life Cycle Emissions and Energy Consumption

Emissions

	Emissions (kgCO2e)											
	Superstructure	Maintenance	Demolition	Total								
Steel	23554	4370	18270	1091	47284							
Concrete	34759	4768	18270	1929	59726							
	Steel 68%		Same		79%							

Energy Consumption

Energy (MJ)										
	Superstructure	Construction	Maintenance	Demolition	Total					
Steel	328683	62379	260820	15577	667459					
Concrete	369355	68074	260820	27531	725780					
	Steel 89%	Less	Same	Less	92%					

RESULTS – Steel Bridge Has Sustainability Advantages

Recycling, Surplus and Landfill

• Recycling Surplus or Cost

98% Steel Recycled at Surplus of \$100/ton 80% of Concrete Recycled at Cost of \$4.10/ton

Landfill Cost \$75/ton

Bridge	Steel Weight (tons)	% Steel Recycled	Concrete Weight	% Concrete Recycled	Steel Recycled (tons)	Concrete Recycled (tons)	Steel to Landfill (tons)	Concrete to Landfill (tons)
Steel	16.96	98%	-	80.0%	16.62	0.00	0.34	0
Concrete	1.08	98%	103.84	80.0%	1.06	83.07	0.02	20.768

Seltice-Warner Salvage Payback and Landfill Costs					
Tons of Steel Recycled	16.62				
Tons of Steel to Landfill	0.34				
Recycling Payback	\$1,662.49				
Landill Cost	\$25.45				

Thornton Depot Salvage Payback and Landfill Costs						
Tons of Steel Recycled	1.06					
Tons of Steel to Landfill	0.02					
Tons of Concrete Recycled	83.07					
Tons of Concrete to Landfill	20.77					
Recycling Cost	\$234.30					
Landill Cost	\$1,559.23					

Present Value of Costs (OMB Discount Rate 1.70%)

Steel Seltice-Warner

Bridge Component:	Costs	Length Factor	Ad	Adjusted Costs		Present Value Cost		Demolition	Costs	Length Factor	Adjusted Costs	Present Value Cost
Prefabricated Bridge	\$ 60,134.00	0.953	\$	57,323.95	\$	57,323.95		Labor	\$ 5,000.00	1.000	\$ 5,000.00	\$ 1,412.21
Labor	\$ 8,750.00	1.000	\$	8,750.00	\$	8,750.00		Equipment	\$ 1,110.00	1.000	\$ 1,110.00	\$ 313.51
Equipment	\$ 8,255.00	1.000	\$	8,255.00	\$	8,255.00		Salvage	\$ (1,662.49)	0.953	\$ (1,584.81)	\$ (447.61)
Materials	\$ 3,491.00	0.953	\$	3,327.87	\$	3,327.87		Landfill	\$ 25.45	0.953	\$ 24.26	\$ 24.26
		Sub-Total Superstructure	\$	77,656.81	\$	77,656.81				Sub-Total Demolition	\$ 4,549.45	\$ 1,302.36

Maintenance	Costs / yr	Costs / yr Length Factor E		Life (yrs)	Adjusted Costs/ yr	Present Value Cost	
Labor	\$ 375.00	1.00	50.00	75	\$ 375.00	8243	
Equipment	\$ 375.00	1.00	50.00	75	\$ 375.00	8243	
				Sub-Total Maintenance	\$ 750.00	\$ 16,485.34	

Concrete Thornton Depot

Bridge Component:	Costs	Length Factor	Adjusted Costs	Present Value Cost	Demolition	Costs	Length Factor	Adjusted Costs	Present Value Cost
Prefabricated Bridge	\$ 73,569.00	1.000	\$ 73,569.00	\$ 73,569.00	Labor	\$ 7,500.00	1.000	\$ 7,500.00	\$ 2,118.31
Labor	\$ 11,800.00	1.000	\$ 11,800.00	\$ 11,800.00	Equipment	\$ 2,040.00	1.000	\$ 2,040.00	\$ 576.18
Equipment	\$ 10,444.00	1.000	\$ 10,444.00	\$ 10,444.00	Salvage	\$ 234.30	1.000	\$ 234.30	\$ 66.18
Materials	\$ 1,032.00	1.000	\$ 1,032.00	\$ 1,032.00	Landfill	\$ 1,559.23	1.000	\$ 1,559.23	\$ 1,559.23
		Sub-Total Superstructure	\$ 96,845.00	\$ 96,845.00			Sub-Total Demolition	\$ 11,333.53	\$ 4,319.90

Maintenance	Costs / yr	Length Factor	EoL Yrs Maint	Life (yrs)	Adjusted Costs/ yr	Present Value Cost
Labor	\$ 375.00	1.00	50.00	75	\$ 375.00	\$ 8,242.67
Equipment	\$ 375.00	1.00	50.00	75	\$ 375.00	\$ 8,242.67
				Sub-Total Maintenance	\$ 750.00	\$ 16,485.34

Life Cycle Cost										
	Superstructure		Tot Initial		PV Maint		PV Demo		Total	LCC
Steel	\$	57,324	\$	77,657	\$	16,485	\$	1,302	\$	95,445
Concrete	\$	73,569	\$	96,845	\$	16,485	\$	4,320	\$	117,650

Steel 78%

80%

Same

Less

81%

RESULTS – Steel Bridge Has Lower Initial & Life Cycle Costs

Considering Sustainability in Design Decisions Monetizing Sustainability Benefits

• Sustainable design is predicated on the idea that society is willing to pay extra for reducing harmful effects on the environment.

For these Two Bridges, This Decision is Trivial Steel has Higher Sustainability Benefits AND Steel has Lower Costs No Decision Required But, What if the Steel Bridge Cost More than the Concrete Bridge?

- Considering sustainability in the design of a bridge entails answering the question, "what additional cost would society or the owner be willing to pay to increase sustainability benefits?"
- Suppose Society is Willing to Pay: \$0.20 per kg of CO₂e Reduced \$0.04 per MJ of Energy Reduced \$50 per ton of Landfill Reduced

Considering Sustainability in Design Decisions Monetizing Sustainability Benefits

• Then, an Equivalent Cost can be Determined for Any Number of Design Alternatives. Basis of Analysis on the Lowest Cost Alternative.

Equivalent Cost = [Initial or Life Cycle Cost]

- [Reduced kg CO2e]*(\$0.20/kg CO2e)
- [Reduced MJ]*(\$0.04/MJ)
- [Reduced Landfill tons]*(\$50/ton)
- The Lowest Equivalent Cost Alternative is Chosen Considering the Sustainability Benefits and Cost of the Alternative.
- This is Actually an Incremental Benefit-Cost Analysis "Hidden" in Terms Owners and Society Understand (Similar to Initial or Life Cycle Costs)

Considering Sustainability in Design Decisions

Equivalent Cost = [Initial or Life Cycle Cost] - [Reduced kg CO2e]*(\$0.20/kg CO2e) - [Reduced MJ]*(\$0.04/MJ) - [Reduced Landfill tons]*(\$50/ton)

Bridge	In	itial or	Init	ial or Life Cycle 🛛	Total	Reduction				Cost Benefit	Total Cost	Equivalent Cost	
	Life	Cycle Cost	kg CO2e	MJ Consumed	Landfill (tons)	kg CO2e	MJ Consumed	Landfill (tons)	kg CO2e	MJ Consumed	Landfill (tons)	Benefit	
Alt 1	\$	100,000	59726	725780	21	0	0	0	\$0	\$0	\$0	\$0	\$100,000
Alt 2	\$	105,000	70000	720000	10	-10274	5780	11	-\$2,055	\$231	\$540	-\$1,284	\$106,284
Alt 3	\$	105,000	47284	667459	1	12442	58321	20	\$2,488	\$2,333	\$1,000	\$5,821	\$99,179
Alt 4	\$	107,000	45000	664000	10	14726	61780	11	\$2,945	\$2,471	\$540	\$5,956	\$101,044
Alt 5	\$	107,000	44000	750000	1	15726	-24220	20	\$3,145	-\$969	\$1,000	\$3,176	\$103,824

- Alt 1 is Lowest Initial Cost with a Basis Total Cost Benefit of Zero
- Alt 4 has highest Sustainability Benefits with \$5956 more benefits than Alt 1, but Costs \$7000 more than Alt 1 (Incremental B/C < 1) – the Sustainability Benefits are not Worth the Extra Cost
- Alt 3 has \$5821 more Sustainability Benefits than Alt 1 and costs only \$5000 more (Incremental B/C = 1.16) the Sustainability Benefits Outweigh the Additional Costs
- Alts 2 & 4 additional sustainability benefits (if any) do not outweigh the additional costs
- Alt 3 costs \$5000 more, but has a Societal Accepted Rate of Return of \$5821
- This is Incremental Benefit Cost Analysis with Monetized Sustainability Benefits
- Owner or Society Determines the Acceptable Cost for Sustainability Benefits
- Owners Understand Equivalent Cost: Compare Similar to Initial Costs or Life Cycle Costs

Summary & Conclusions

Results of Steel Seltice-Warner and Concrete Thornton Depot Bridges

- Steel Shows Sustainability Benefits
- Steel Has Lower Initial and Life Cycle Costs

Equivalent Cost Procedure

- Similar to Initial Cost or Life Cycle Cost Decision Making
- Owner or Society Driven with Acceptable Sustainability Benefit Costs
- Flexible in Analysis Details

Today's Steel Bridges

State of the Art

- Light Weight, permits lighter equipment
- Local Crew Installation
- Close Tolerances, more efficient erection
- Longer Spans, minimize disruption underneath

Durable

- Robust, highly resistant to extreme natural disasters
- Weathering Steel, Galvanizing, Metalizing, Painting and 50CR (Stainless) produce Long Life
- Long Life, many steel bridges well over 100 years old

Today's Steel Bridges

Speed of Construction – Accelerated Bridge Construction

- Wide Range of Modular/Prefabricated Steel Bridges, install in a weekend
- Lighter Equipment, Ease of Erection

Cost Effectiveness

- Competitive with Other Bridge Materials
- Whole Project Savings, lighter abutments, smaller equipment, fast installation
- Weathering Steel, Galvanizing, Metalizing & 50CR Steel, can reduce initial costs and life cycle costs

Today's Steel Bridges

Sustainability

- Steel is North America's #1 Recycled Material over 90% of steel in a beam is from recycled materials
- Recycled Steel Conserves Energy, enough to power 18 million homes
- Steel's Energy Use Reduced 33% Since 1990
- Greenhouse Gas Emissions Reduced by 45% since 1975

Resiliency

- Long Service Life
- Ease of Inspection
- Ease of Repair
- Strengthening for Increased Loads
- Recycling & Repurposing
- Habitat Protection

5 Ways to Keep Learning About Steel Bridges

Tribal Workshop: DIY County Bridges in 6 Steps

6-part Education to Potentially 3000 Counties on How They Can Build Their Own Bridges

Based on Whitman County, WA, Experience

2022 NACE

Invited Back for NACE 2023

Workshop Benefits

- Save Money and Build More Bridges! ٠
- Workforce Development
- Minimize Public Inconvenience
- Accelerate Construction
- Use/Share County Equipment ٠

Agenda (4 hours, including breaks)

- Module 1: Can My County Build This Bridge? (35 minutes)
- Module 2: Permits, Environmental Issues and Geotech Considerations (35 minutes)
- Module 3: Selecting Bridge Type and Bidding an Award (35 minutes)
- Module 4: Foundation and Substructure Design/Installation (35 minutes)
- Module 5: Installing the Bridge (35 minutes)
- Module 6: Commissioning and Opening to Traffic (35 minutes)

So You Want to Build a Bridge (and Save Money)? DIY County Bridges in 6 Steps

Workshop Overview

Our nation is facing an infrastructure crisis. More than 220,000 bridges in the United States need major repair work or should be replaced. Nationwide, counties own and maintain 40 percent of the nation's bridges, making them the single largest stakeholder in local road and bridge construction, rehabilitation, expansion and maintenance

This situation presents a significant challenge for cash-strapped state and local governments. To responsibly fix our nation's county bridges, cost-effective and sustainable solutions are needed - one option is to use county crews to assist with ed

Whitman County Saved \$30,000 by Building their Own Steel Bridge

'I think we can build a bridge structure for about half of what the contracting community can do. Mark Storey, P.E. Director/County Engineer fy the Whitman County, Washington ected to Public Works

leo).

iteel

So You Want to Build a Bridge? DIY County Bridges in 6 Steps

In the past 10 years, more than 15,000 bridge owners and designers have attended SSSBA workshops to learn about the cost and time advantages of short span steel bridges. Please join us for this entertaining and engaging educational adventure certain to save you time and money in future county bridge installations.

Sample Video

https://www.shortspansteelbridges.org/county-saves-steel/

New Design-Build Bridge Bundling Case Study

Purpose – Help Owners Use Steel Bridges for Bundled Projects Bipartisan Infrastructure Law

\$39.5 billion over 5 years to repair or replace as many as 15,000 bridges Minimum 15% must be used to build off-system bridges

\$200 million per year for Tribal Bridges – Bridge Bundling Important

Based on Missouri DOT Fixing Access to Rural Missouri (FARM) Project

3 Bids – Steel Bridge Design Won

Interviews of:

MoDOT Bridge Engineer, Bryan Hartnagel MoDOT Project Manager, Jeff Gander Wilson Engineers Design Firm **Delongs Fabricator** Lehman Construction

Anticipated BIL Spending Highways, Roads, Bridges

(\$ Billions)

Workshops: Online Education Packet

Getting Students, Faculty and Young Engineers Familiar with Steel Bridges and Instill a Positive Opinion of Steel Bridges is Imperative for the Future of Steel Bridges

Steel Bridge Education Lectures: From Concept to Delivery

Lecture 1: Bridge Infrastructure & the Steel Bridge Industry Lecture 2: Short Span Steel Girder Economics & eSPAN140 Lecture 3: Multi-Span Steel Girder **Bridges & SIMON** Lecture 4: Detailing, Fabrication and **Durability & Corrosion Protection** Lecture 5: Accelerated Bridge **Construction Applications** Lecture 6: Manufacturer Bridge Solutions Showcase

<u>9 Workshops Through 2022</u> Over 1400 Certificates Awarded Upcoming Fall, 2023

Next Early November, 7:00 Eastern Time Invitation Soon

Register: www.shortspansteelbridges.org/

New 2024 Student Workshop: Simple Span Bridge Design

6-part steel bridge design education packet based on NSBA Navigating Routine Steel Bridge Design

Similar Online Certificate Program to Steel Bridges from Concept to Delivery

First Offering in 2024 80 ft Simple Span Plate Girder Design

Lecture 1: Introduction & Trial Bridge Design Lecture 2: Bridge Design Lecture 3: Bridge Analysis & Design Limit States Lecture 4: Strength Design Lecture 5: Serviceability & Construction Design Lecture 6: Detailing & Final Thoughts

Designed According to the SP Ealtion of AMSHIG LRPD Undge Design Specifications

Target Audience: University Students Young Professionals

Trial Design for Homogeneous Plate Girder Bridge

Summer On-Line Series: Professional

2020 Solutions for Cost-Effective Steel Bridges – Shelter-in-Place Summer Webinar Series
2021 Steel Bridge Essentials – 6-Part Summer Webinar Series
2022 Steel Bridge Essentials – Designing Cost-Effective & Resilient Bridges
2023 Steel Bridge 4-Part Webinar Series: Learning by Example

Wednesday, June 1 - Building a Sustainable Infrastructure with Steel Bridges

- Sustainability of the American Steel Industry
 - o Mark Thimons, Vice President, Sustainability, American Iron and Steel Institute
- Sustainability of Rural Steel and Concrete Bridges
 - Michael G. Barker, Ph.D., P.E., Professor, University of Wyoming

Friday, June 3 - Modern Corrosion Protection Systems

- Durability Strategies for Steel Bridges
 - o Jeff Carlson, P.E., Director of Market Development, National Steel Bridge Alliance
- Reference Manual for the Design, Detailing, and Maintenance of Uncoated Weathering Steel in Bridges
 - o Jennifer McConnell, Associate Professor, University of Delaware
 - o Thomas Murphy, Ph.D., P.E., S.E., Modjeski and Masters, Inc.

Monday, June 6 - Steel Bridge Case Studies

- Belmont Prefabricated Rolled-Beam Bridge
 - Mark Storey, P.E., Public Works Director / County Engineer, Whitman County (WA)
- TR-251 Press-Brake Tub Girder Bridge
 - o Jeff Blue, P.E., County Engineer, Champaign County (IL)
- I-44 Bridge Replacements with Buried Bridges, Lawrence County, Missouri
 Joel Hahm, P.E., Senior Engineer, Contech Engineered Solutions LLC
- Fixing Access to Rural Missouri (FARM) Bridge Program
 - o Gary W. Wisch, P.E., Vice President, Engineering, DeLong's, Inc

Wednesday, June 8 – Steel Bridge Design Tools Demonstration

- Medium/Long Span Bridge Design Using LRFD Simon (165'-200'-165' span arrangement)
 - Devin Altman, P.E., Bridge Steel Specialist, National Steel Bridge Alliance
- Simple Span Bridge Design Using eSPAN140
 - o Gregory K. Michaelson, Ph.D., P.E., Associate Professor, Marshall University

Friday, June 10 – Steel Bridge Economics

- Pricing Study of Recently Constructed Bridges
 - John Hastings, P.E., Bridge Steel Specialist, Southeastern Market, National Steel Bridge Alliance
- Historical Life Cycle Costs of Steel and Concrete Girder Bridges
 - o Michael G. Barker, Ph.D., P.E., Professor, University of Wyoming

Steel Bridge Essentials 6-Part Free Summer Webinar Series June 14, 16, 18, 21, 23, 8-26 Image: Steel Bridge Essentials June 14, 16, 18, 21, 23, 8-26

Workshops: Professional

Short Span Steel Bridge Workshops

Over the past 10-years, over 5,000 bridge owners and designers have learned about the cost and time advantages of short span steel bridges in SSSBA workshops and conferences throughout North America.

And now, the SSSBA is offering complimentary customized educational workshops (on-site or virtual) specifically for county engineers, state DOTs, and design firms. The workshops are taught by industry experts with decades of experience in the cost-effective design and construction of short span bridges.

The workshops can be set up as:

- 1-2 hour webinar on a specific topic.
- 3-4 hour (half-day) workshop to provide practical information on the safe and cost-effective design, detail, fabrication and installation of short span steel bridges.
- 6 hours (full-day) session to provide an in-depth overview of short span steel bridges.

Suggested topics to select from include:

- Practical & Cost-Effective Steel Bridge Design
- Free Design Tools (eSPAN140 and SIMON)
- Pre-engineered Bridge Solutions
- Accelerated Bridge Construction Options Case Studies (from local counties)

 - Buried Soil Steel Bridge Structure Alternatives Life-Cycle Analysis
- Coating Solutions (galvanized, painted, and weathering steel)

Sample Workshop Agenda (can also be altered for a virtual meeting)

4-Hour Workshop Agenda

00:00 (40 min) Introduction, Short Span Steel Bridge Overview & Design Tools (eSPAN140) 00:40 (35 min) Bridge Economy & Life Cycle Costs 01:15 (35 min) Steel Bridge Case Study 01:50 (25 min) Break (networking) 02:15 (35 min) National Steel Bridge Alliance Design Resources & SIMON (design software) 02:50 (35 min) Buried Steel Bridges Design & Construction 03:25 (35 min) Pre-Fabricated Steel Bridges & Accelerated Bridge Construction 04:00 Adjourn * Each presentation will allow 5-10 minutes of Q&A

6-Hour Workshop Agenda

00:00 (45 min) Introduction, Short Span Steel Bridge Overview & Design Tools (eSPAN140) 00:45 (40 min) Bridge Economy & Life Cycle Costs 01:25 (35 min) Steel Bridge Case Study 02:00 (25 min) Break (networking) 02:25 (40 min) National Steel Bridge Alliance Design Resources & SIMON (design software) 03:05 (35 min) Practical Detailing, Durability and Steel Protection Systems 03:40 (40 min) Press-Brake Tub Girder Bridges 04:20 (25 min) Break (Lunch?) 04:45 (35 min) Buried Steel Bridges Design & Construction 05:20 (40 min) Pre-Fabricated Steel Bridges & Accelerated Bridge Construction 06:00 Adjourn * Each presentation will allow 5-10 minutes of Q&A

Contact Dan Snyder, Director of the SSSBA, for more information (dsnyder@steel.org - 301-367-6179)

www.ShortSpanSteelBridges.org

Free Customized Workshops for Counties, DOTs, and Design Firms

Topics: Education, Events, Professional, Recommended

Short span bridges provide vital links in the nation's infrastructure network. Yet, nearly a guarter of these bridges are classified as structurally deficient or functionally obsolete.

According to ASCE, more than 30% of existing bridges have exceeded their 50-year design life. This situation presents a significant challenge for cash-strapped state and local governments.

The SSSBA has developed technological and design innovations for bridges under 140 feet that save significant time and costs for county and state bridge officials.

Over the past 10-years, over 5,000 bridge owners and designers have learned about the cost and time advantages of short span steel bridges in SSSBA workshops and conferences throughout North America.

And now, the SSSBA is offering complimentary customized educational guest speakers/webinars and workshops (on-site or virtual) specifically for county engineers, state DOTs, and design firms. The webinars/workshops are taught by industry experts with decades of experience in the cost-effective design and construction of short span bridges.

The workshops can be set up as:

1-2 hour webinar on a specific topic (can be used as a "guest speaker" for your ever

TRB Low Volume Roads Conference Summer 2023

Barron County, Wisconsin Fall 2023

SSSBA, This Morning, Sept 20, 2023

Hawaii DOT, November 2023

5 Ways to Keep Learning About Steel Bridges

Website:ShortSpanSteelBridges.orgTwitter:@ShortSpanSteelFacebook:Short Span Steel Bridge Alliance